Biểu diễn miền nghiệm của bất phương trình:
a) \(3x - y > 3\)
b) \(x + 2y \le - 4\)
c) \(y \ge 2x - 5\)
Biểu diễn miền nghiệm của bất phương trình:
a) \(3x - y > 3\)
b) \(x + 2y \le - 4\)
c) \(y \ge 2x - 5\)
Biểu diễn miền nghiệm của hệ bất phương trình:
a) \(\left\{ \begin{array}{l}2x - 3y < 6\\2x + y < 2\end{array} \right.\)
b) \(\left\{ \begin{array}{l}4x + 10y \le 20\\x - y \le 4\\x \ge - 2\end{array} \right.\)
c) \(\left\{ \begin{array}{l}x - 2y \le 5\\x + y \ge 2\\x \ge 0\\y \le 3\end{array} \right.\)
Thảo luận (1)Hướng dẫn giảia) Vẽ các đường thẳng \(2x - 3y = 6;2x + y = 2\) (nét đứt)
Thay tọa độ điểm O vào các bất phương trình trong hệ.
Ta thấy: 2.0-3.0
=> O thuộc miền nghiệm của cả 2 bất phương trình
Miền nghiệm:
b)
Vẽ các đường thẳng
\(4x + 10y \le 20 \Leftrightarrow y = - \frac{2}{5}x + 2\) (nét liền)
\(x - y = 4 \Leftrightarrow y = x - 4\)(nét liền)
\(x = - 2\)(nét liền)
Thay tọa độ điểm O vào các bất phương trình trong hệ.
Ta thấy: 4.0+10.0-2
=> O thuộc miền nghiệm của cả 3 bất phương trình
Miền nghiệm:
c)
Vẽ các đường thẳng
\(x - 2y = 5 \Leftrightarrow y = \frac{1}{2}x - 5\) (nét liền)
\(x + y = 2 \Leftrightarrow y = - x + 2\)(nét liền)
\(y = 3\)(nét liền)
Và trục Oy
Thay tọa độ O vào bất phương trình \(x - 2y \le 5\)
=> O thuộc miền nghiệm của bất phương trình trên.
Thay tọa độ O vào \(x + y \ge 2\)
=> O không thuộc miền nghiệm của bất phương trình trên
Lấy phần bên phải trục Oy và bên dưới đường thẳng y=3
Miền nghiệm:
(Trả lời bởi Hà Quang Minh)
Nhu cầu canxi tối thiểu cho một người đang độ tuổi trưởng thành trong một ngày là \(1300\) mg. trong 1 lạng đậu nành có 165 mg canxi, 1 lạng thịt có 15 mg canxi.
(Nguồn: https://hongngochospital.vn)
Gọi \(x,y\) lần lượt là số lạng đậu nành và số lạng thịt mà một người đang độ tuổi trưởng thành ăn trong một ngày
a) Viết bất phương trình bậc nhất hai ẩn \(x,y\) để biểu diễn lượng canxi cần thiết trong một ngày của một người trong độ tuổi trưởng thành.
b) Chỉ ra một nghiệm \(\left( {{x_0};{y_0}} \right)\) với \({x_0},{y_0} \in \mathbb{Z}\) của bất phương trình đó.
Thảo luận (1)Hướng dẫn giảia)
Lượng canxi có trong x lạng đậu nành là 165x (mg)
Lượng canxi có trong y lạng thịt là 15y (mg)
Bất phương trình là \(165x + 15y \ge 1300\)
b) Thay cặp số (10;10) vào bất phương trình ta được:
\(165.10 + 15.10 = 1650 + 150\)\( = 1800 > 1300\)
Vậy (10;10) là một nghiệm của bất phương trình.
(Trả lời bởi Hà Quang Minh)
Bác Ngọc thực hiện chế độ ăn kiêng với yêu cầu tối thiểu hằng ngày qua thức uống là 300 ca-lo, 36 đơn vị vitamin A và 90 đơn vị vitamin C. Một cốc đồ uống ăn kiêng thứ nhất cung cấp 60 ca-lo, 12 đơn vị vitamin A và 10 đơn vị vitamin C. Một cốc đổ uống ăn kiêng thứ hai cung cấp 60 ca-lo, 6 đơn vị vitamin A và 30 đơn vị vitamin C.
a) Viết hệ bất phương trình mô tả số lượng cốc cho đồ uống thứ nhất và thứ hai mà bác Ngọc nên uống mỗi ngày để đáp ứng nhu cầu cần thiết đối với số ca-lo và số đơn vị vitamin hấp thụ.
b) Chỉ ra hai phương án mà bác Ngọc có thể chọn lựa số lượng cốc cho đồ uống thứ nhất và thứ hai nhằm đáp ứng nhu cầu cần thiết đối với số ca-lo và số đơn vị vitamin hấp thụ.
Thảo luận (1)Hướng dẫn giảia) Gọi x, y lần lượt là số lượng cốc cho đồ uống thứ nhất và thứ hai cần tìm.
Lượng calo trong cả 2 đồ uống là: 60x+60y
Lượng vitamin A trong 2 đồ uống là: 12x+6y
Lượng vitamin C trong 2 đồ uống là: 10x+30y
Ta có hệ bất phương trình:
\(\left\{ \begin{array}{l}60x + 60y \ge 300\\12x + 6y \ge 36\\10x + 30y \ge 90\end{array} \right.\)
b)
+) Ta có:
60.2+60.4=360>300
2.12+4.6=48>36
2.10+4.30=140>90
=> (2;4) là một nghiệm của hệ.
+) Ta có:
1.60+5.60=360>300
1.12+5.6=42>36
1.10+5.30=160>90
=> (1;5) là một nghiệm của hệ.
Vậy hai phương án bác Ngọc có thể chọn là:
Phương án 1: 2 cốc loại 1 và 4 cốc loại 2.
Phương án 2: 1 cốc loại 1 và 5 cốc loại 2.
(Trả lời bởi Hà Quang Minh)
Một chuỗi nhà hàng ăn nhanh bán đồ ăn từ 10h00 sáng đến 22h00 mỗi ngày. Nhân viên phục vụ của nhà hàng làm việc theo hai ca, mỗi ca 8 tiếng, ca I từ 10h00 đến 18h00 và ca II từ 14h00 đến 22h00.
Tiền lương của nhân viên được tính theo giờ (bảng bên).
Để mỗi nhà hàng hoạt động được thì cần tối thiểu 6 nhân viên trong khoảng 10h00 - 18h00, tối thiểu 24 nhân viên trong thời gian cao điểm 14h00 - 18h00 và không quá 20 nhân viên trong khoảng 18h00 – 22h00. Do lượng khách trong khoảng 14h00 – 22h00 thường đông hơn nên nhà hàng cần số nhân viên ca II ít nhất phải gấp đôi số nhân viên ca I. Em hãy giúp chủ chuỗi nhà hàng chỉ ra cách huy động số lượng nhân viên cho mỗi ca sao cho chi phí tiền lương mỗi ngày là ít nhất.
Thảo luận (1)Hướng dẫn giảiTham khảo:
Gọi x, y lần lượt là số nhân viên ca I và ca II (x>0,y>0)
Theo giả thiết ta có: \(\left\{ \begin{array}{l}x \ge 6\\x + y \ge 24\\\left( {x + y} \right) - x \le 20\\y \ge 2x\end{array} \right.\)
Biểu diễn tập nghiệm của hệ bất phương trình:
Tập nghiệm của bất phương trình giới hạn bởi tứ giác ABCD với:
\(A(6;20), B(10;20), C(8;16), D(6;18)\)
Tiền lương mỗi ngày của các nhân viên: \(T = 20x + 22y\)(nghìn đồng)
\(T(6;20)=20.6+20.22=560\) (nghìn đồng)
\(T(10;20)=20.10+22.20=640\) (nghìn đồng)
\(T(8;16)=20.8+22.16=512\) (nghìn đồng)
\(T(6;18)=20.6+22.18=516\) (nghìn đồng)
Vậy để tiền lương mỗi ngày ít nhất thì ca I có 8 nhân viên, ca II có 16 nhân viên.
(Trả lời bởi Kiều Sơn Tùng)