Thu gọn biểu thức:
B = 1998(199949 + 199948 + 199947 + ... + 19992 +2000) + 1
Rút gọn biểu thức:
B = (1+ tan2a).(1- sin2a) \(-\)(1+ cotg2a).(1- cos2a)
\(\left(1+tan^2a\right)\left(1-sin^2a\right)-\left(1+cot^2a\right)\left(1-cos^2a\right)\)
\(=\left(1+\dfrac{sin^2a}{cos^2a}\right).cos^2a-\left(1+\dfrac{cos^2a}{sin^2a}\right).sin^2a\)
\(=cos^2a+sin^2a-sin^2a-cos^2a=\)\(0\)
Vậy B=0
Thu gọn và tìm bậc của đơn thức:
B = \(\dfrac{1}{4}\)x3y . (-2)x3y5 . 3yz3
Lời giải:
$B=\frac{1}{4}.(-2).3.(x^3.x^3)(y.y^5.y).z^3$
$=\frac{-3}{2}x^6y^7z^3$
Bậc của $B$: $6+7+3=16$
`1/4 x^3y * (-2)x^3y^5 * 3yz^3`
`=[1/4 *(-2) * 3] *(x^3*x^3) *(y*y^5*y) *z^3`
`= -3/2 x^6y^7z^3`
Bậc của đơn thức : `16`
Rút gọn biểu thức:
B=\(\dfrac{3}{x-1}.\sqrt{\dfrac{x^2-2x+1}{9x^2}}\)với 0<x<1
Lời giải:
\(B=\frac{3}{x-1}\sqrt{\frac{(x-1)^2}{(3x)^2}}=\frac{3}{x-1}|\frac{x-1}{3x}|\)
\(=\frac{3}{x-1}.\frac{1-x}{3x}=\frac{-1}{x}\)
\(B=\dfrac{3}{x-1}.\sqrt{\dfrac{x^2-2x+1}{9x^2}}=\dfrac{3}{x-1}.\sqrt{\left(\dfrac{x-1}{3x}\right)^2}\)
\(=\dfrac{3}{x-1}.\left|\dfrac{x-1}{3x}\right|=\dfrac{3}{x-1}.\dfrac{1-x}{3x}=-\dfrac{1}{x}\)
Nêu điều kiện xác định và rút gọn biểu thức:B=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
đk : x >= 0 ; x khác 1
\(B=\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{x-1}=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{x-1}=\dfrac{4\sqrt{x}}{x-1}\)
B xác định \(< =>\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(B=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{x-1}=\dfrac{x+2\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)}{x-1}=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{x-1}=\dfrac{4\sqrt{x}}{x-1}\)
ĐKXĐ:\(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ne0\\\sqrt{x}+1\ne0\left(luôn.đúng\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ =\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
Thực hiện phép tính và thu gọn biểu thức:
B= \(\left(\dfrac{4}{1-\sqrt{5}}+\dfrac{1}{2+\sqrt{5}}-\dfrac{4}{3-\sqrt{5}}\right)\left(\sqrt{5}-6\right)\)
Thực hiện phép tính:
\(\sqrt{48}-\dfrac{\sqrt{21}-\sqrt{15}}{\sqrt{7}-\sqrt{5}}+\dfrac{2}{\sqrt{3}+1}\)
\(B=\left(\dfrac{4}{1-\sqrt{5}}+\dfrac{1}{2+\sqrt{5}}-\dfrac{4}{3-\sqrt{5}}\right)\left(\sqrt{5}-6\right)\)
\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}+\dfrac{2-\sqrt{5}}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}-\dfrac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\right]\left(\sqrt{5}-6\right)\)
\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{1-5}+\dfrac{2-\sqrt{5}}{4-5}-\dfrac{4\left(3+\sqrt{5}\right)}{9-5}\right]\left(\sqrt{5}-6\right)\)
\(B=\left[-\dfrac{4\left(1+\sqrt{5}\right)}{4}-\dfrac{2-\sqrt{5}}{1}-\dfrac{4\left(3+\sqrt{5}\right)}{4}\right]\left(\sqrt{5}-6\right)\)
\(B=\left(-1-\sqrt{5}-2+\sqrt{5}-3-\sqrt{5}\right)\left(\sqrt{5}-6\right)\)
\(B=\left(-\sqrt{5}-6\right)\left(\sqrt{5}-6\right)\)
\(B=-\left(\sqrt{5}+6\right)\left(\sqrt{5}-6\right)\)
\(B=-\left(5-36\right)\)
\(B=-\left(-31\right)\)
\(B=31\)
_____________________________
\(\sqrt{48}-\dfrac{\sqrt{21}-\sqrt{15}}{\sqrt{7}-\sqrt{5}}+\dfrac{2}{\sqrt{3}+1}\)
\(=4\sqrt{3}-\dfrac{\sqrt{3}\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{7}-\sqrt{5}}+\dfrac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=4\sqrt{3}-\sqrt{3}-\dfrac{2\left(\sqrt{3}-1\right)}{2}\)
\(=3\sqrt{3}-\sqrt{3}+1\)
\(=2\sqrt{3}+1\)
Thu gọn đa thức:
B = \(-\dfrac{1}{7}x^2y+x^5y^2-xy+\dfrac{1}{2}x^5y^2-5xy+\dfrac{1}{7}x^2y+2021^0\)
\(B=x^5y^2+\dfrac{1}{2}x^5y^2-6xy+1=\dfrac{3}{2}x^5y^2-6xy+1\)
\(B=-\dfrac{1}{7}x^2y+x^5y^2-xy+\dfrac{1}{2}x^5y^2-5xy+\dfrac{1}{7}x^2y+2021^0\\ =\left(-\dfrac{1}{7}x^2y+\dfrac{1}{7}x^2y\right)+\left(x^5y^2+\dfrac{1}{2}x^5y^2\right)-\left(xy+5xy\right)+1\\ =0+\dfrac{3}{2}x^5y^2-6xy+1\\ =\dfrac{3}{2}x^5y^2-6xy+1\)
Rút gọn biểu thức
B=1998*(199949+199948+199947+...+19992+2000)+1
Tìm điều kiện xác định và rút gọn biểu thức:
B=\(\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{3}{x-9}\right):\dfrac{1}{\sqrt{x}-3}\)
ĐKXĐ: \(x\ge0;x\ne9\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{3}{x-9}\right):\dfrac{1}{\sqrt{x}-3}\)
\(=\left[\dfrac{\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\dfrac{1}{\sqrt{x}-3}\)
\(=\dfrac{\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{1}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >9\end{matrix}\right.\)
\(B=\dfrac{\sqrt{x}-3+3}{x-9}\cdot\left(\sqrt{x}-3\right)=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
Rút gọn biểu thức:
B=\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{x+1}{x-1}\) với x\(\ge\)0 và x\(\ne\)+-1.Tìm x để B<1
\(B=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{x+1}{x-1}=\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{x-1}{x+1}\)
\(=\dfrac{2}{x-1}.\dfrac{x-1}{x+1}=\dfrac{2}{x+1}\)
Để \(B< 1\Rightarrow\dfrac{2}{x+1}< 1\Rightarrow1-\dfrac{2}{x+1}>0\Rightarrow\dfrac{x-1}{x+1}>0\)
mà \(x+1>0\left(x\ge0\right)\Rightarrow x-1>0\Rightarrow x>1\)
a) Ta có: \(B=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{x+1}{x-1}\)
\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{x+1}\)
\(=\dfrac{2}{x+1}\)