Tìm x thuộc Z , biết:
a. (x-3) x (2y+1) = 6
b. x + y + xy =1
Bài 4: tìm x,y ϵ Z, biết:
a) (x - 3) (2y - 6) = 5
b) (2x + 1) (y + 2)= 10
c) xy - 5x + 2y = 7
d) xy - 3x - 4y = 5
a, \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-3,2y-6\in Z\\x-3,2y-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\end{matrix}\right.\)
Ta có bảng:
x-3 | -1 | -5 | 1 | 5 |
2y-6 | -5 | -1 | 5 | 1 |
x | 2 | -2 | 4 | 8 |
y | \(\dfrac{1}{2}\left(loại\right)\) | \(\dfrac{5}{2}\left(loại\right)\) | \(\dfrac{11}{2}\left(loại\right)\) | \(\dfrac{7}{2}\left(loại\right)\) |
Vậy không có x,y thỏa mãn đề bài
b, tương tự câu a
\(c,xy-5x+2y=7\\ \Rightarrow x\left(y-5\right)+2y-10=-3\\ \Rightarrow x\left(y-5\right)+2\left(y-5\right)=-3\\ \Rightarrow\left(x+2\right)\left(y-5\right)=-3\)
Rồi làm tương tự câu a
\(d,xy-3x-4y=5\\ \Rightarrow x\left(y-3\right)-4y+12=17\\ \Rightarrow x\left(y-3\right)-4\left(y-3\right)=17\\ \Rightarrow\left(x-4\right)\left(y-3\right)=17\)
Rồi làm tương tự câu a
Bài 1: Phân tích đa thức sau :
a)2x(xy+y^2-3)
b)(x-y)(2x+y)
c)(x-2y)^2
d)(2x-y)(y+2x)
bài 2: Phân tích các đơn thức thành nhân tử
a)3x^2-3xy
b)x^2-4y^2
c)3x-3y+xy-y^2
d)x^2-1+2y-y^2
Bài 3: Tìm x biết:
a)3x^2-6x=0
b)Tìm x,y thuộc z biết: x^2+4y^2-2xy=4
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
Tìm x;y biết:
a,(2x +3)(y - 1) =54
b, xy - x +2y = 54
a) \(\left(2x+3\right)\left(y-1\right)=54\)
\(\Rightarrow2x+3,y-1\inƯ\left(54\right)\)
Ta có bảng sau:
2x + 3 | 54 | 1 | -1 | -54 | 2 | -2 | 27 | -27 | -9 | 9 | 6 | -6 | 18 | -18 | -3 | 3 |
y - 1 | 1 | 54 | -54 | -1 | 27 | -27 | 2 | -2 | -6 | 6 | 9 | -9 | 3 | -3 | -18 | 18 |
x | 51/2 | -1 | -2 | -57/2 | -1/2 | -5/2 | 12 | -15 | -6 | 3 | 3/2 | -9/2 | 15/2 | -21/2 | -3 | 0 |
y | 2 | 55 | -53 | 0 | 28 | -26 | 3 | -1 | -5 | 7 | 10 | -8 | 4 | -2 | -17 | 19 |
Vậy: ...
Tìm x,y,z biết:
a, x : y : z = 10 : 3 : 4 và x + 2y - 3z = -20
b, \(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) và \(\dfrac{y}{5}\) = \(\dfrac{z}{4}\) và x - y + z = -49
c, \(\dfrac{x}{2}\)= \(\dfrac{y}{3}\) =\(\dfrac{z}{4}\) và xy + \(z^2\)= 88
d, \(\dfrac{x}{5}\)= \(\dfrac{y}{7}\) = \(\dfrac{z}{3}\) và \(x^2\) + \(y^2\) + \(z^2\) = 415
Giải hộ mk nha
Tìm x,y thuộc Z: x^3+1-xy=2y-x
Tìm x
a, (x+y).(2x-1)=0
b,(x+y)(2x-1)=3 với x,y thuộc Z
c, xy+x-2y=3 với x,y thuộc Z
a)
<=> x+y=0 hoặc 2x-1=0
<=> x=-y hoặc x=1/2.
b)
=> x+y và 2x-1 là ước của 3 =1;3;-1;-3.
Do 2x-1 ko chia hết cho 2
TH1=> 2x-1=-1 và x+y=-3
=> x=0 và y=-3
TH2: 2x-1=1 và x+y=3
=> x=1 và y=2.
c) <=>x(y+1)-2y-2=1
<=> x(y+1)-2(y+1)=1
<=> (x-2)(y+1)=1
=> x-2; y+1 là ước của 1 =1;-1
TH1 x-2=1 và y+1=1
=> x=3 và y=0
TH2 x-2=-1 và y+1=-1
=> x=1 và y=-2.
( x + y ).( 2x - 1 ) = 0
\(\Rightarrow\orbr{\begin{cases}x+y=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x+y=0\\2x=0+1\end{cases}\Rightarrow}\orbr{\begin{cases}x+y=0\\2x=1\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{2}+y=0\\x=\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}y=0+\frac{1}{2}\\x=\frac{1}{2}\end{cases}\Rightarrow\orbr{\begin{cases}y=\frac{1}{2}\\x=\frac{1}{2}\end{cases}}}\)
Vậy ...................
1.Tìm x;y thuộc N : x^3 -7=y^2
2.Tìm p;q thuộc P và x thuộc z thỏa mãn: x^5+px+3q=0
3, Tìm x;y thuộc Z thỏa mãn 6x^3-xy(11x+3y)+2y^3=6
Tìm các số nguyễn,y biết:
A)3^x+1.5^y=45^x
b)xy-x+2y=4
c)(3x+6)^2022+(y-1)^20 <_ 0
Tìm x,y biết x,y thuộc Z:
1> (x-2).(2y+1)=17
2> x.(y-3)=-12
3> (x-1).(y+2)=7
4>xy+2x+2y=-16
5> xy-3x-y=0