Quy đồng các phân số sau:
a/\(\frac{11}{120}và\frac{7}{40}\)
b/\(\frac{-2}{9}và\frac{4}{25}\)
Quy đồng mẫu các phân số sau:a, \(\frac{11}{120}và\frac{7}{40}\)
b, \(\frac{24}{146}và\frac{6}{13}\)
a, \(\frac{7}{40}=\frac{7x3}{40x3}=\frac{21}{120}\) và \(\frac{11}{120}\)
b, \(\frac{24}{146}=\frac{12}{73}=\frac{12x13}{73x13}=\frac{156}{949}\)
\(\frac{6}{13}=\frac{6x73}{13x73}=\frac{438}{949}\)
1. Quy đồng mẫu các phân số sau:
a) \(\frac{5}{{12}}\) và \(\frac{7}{{15}}\); b) \(\frac{2}{7};\,\,\frac{4}{9}\) và \(\frac{7}{{12}}\).
2. Thực hiện các phép tính sau:
a) \(\frac{3}{8} + \frac{5}{{24}};\) b) \(\frac{7}{{16}} - \frac{5}{{12}}.\)
1. a) Ta có BCNN(12, 15) = 60 nên ta lấy mẫu chung của hai phân số là 60.
Thừa số phụ:
60:12 =5; 60:15=4
Ta được:
\(\frac{5}{{12}} = \frac{{5.5}}{{12.5}} = \frac{{25}}{{60}}\)
\(\frac{7}{{15}} = \frac{{7.4}}{{15.4}} = \frac{{28}}{{60}}\)
b) Ta có BCNN(7, 9, 12) = 252 nên ta lấy mẫu chung của ba phân số là 252.
Thừa số phụ:
252:7 = 36; 252:9 = 28; 252:12 = 21
Ta được:
\(\frac{2}{7} = \frac{{2.36}}{{7.36}} = \frac{{72}}{{252}}\)
\(\frac{4}{9} = \frac{{4.28}}{{9.28}} = \frac{{112}}{{252}}\)
\(\frac{7}{{12}} = \frac{{7.21}}{{12.21}} = \frac{{147}}{{252}}\)
2. a) Ta có BCNN(8, 24) = 24 nên:
\(\frac{3}{8} + \frac{5}{{24}} = \frac{{3.3}}{{8.3}} + \frac{5}{{24}} = \frac{9}{{24}} + \frac{5}{{24}} = \frac{{14}}{{24}} = \frac{7}{{12}}\)
b) Ta có BCNN(12, 16) = 48 nên:
\(\frac{7}{{16}} - \frac{5}{{12}} = \frac{{7.3}}{{16.3}} - \frac{{5.4}}{{12.4}} = \frac{{21}}{{48}} - \frac{{20}}{{48}} = \frac{1}{{48}}\).
Quy đồng mẫu các phân số sau:
a)\(\frac{9}{{12}}\) và \(\frac{7}{{15}}\); b)\(\frac{7}{{10}};\,\,\frac{3}{4}\) và \(\frac{9}{{14}}\).
a) Ta có: \(12 = 2^2 . 3; 15 = 3.5\)
\(BCNN(12, 15) = 2^2.3.5 = 60\) nên chọn mẫu chung là 60.
\(\begin{array}{l}\frac{9}{{12}} = \frac{{9.5}}{{12.5}} = \frac{{45}}{{60}}\\\frac{7}{{15}} = \frac{{7.4}}{{15.4}} = \frac{{28}}{{60}}\end{array}\)
b) Ta có: \(10 = 2.5; 4 = 2^2; 14=2.7\)
\(BCNN(10, 4, 14) =2^2.5.7= 140\) nên chọn mẫu chung là 140.
\(\begin{array}{l}\frac{7}{{10}} = \frac{{7.14}}{{10.14}} = \frac{{98}}{{140}}\\\frac{3}{4} = \frac{{3.35}}{{4.35}} = \frac{{105}}{{140}}\\\frac{9}{{14}} = \frac{{9.10}}{{14.10}} = \frac{{90}}{{140}}\end{array}\)
Quy đồng mẫu các phân số sau:
a) \(\frac{4}{9}\)và \(\frac{7}{15}\);
b) \(\frac{5}{12}; \frac{7}{15}\) và \(\frac{4}{27}\)
a) \(\frac{4}{9}\)và \(\frac{7}{15}\)
Ta có: \(9 = 3^2 ; 15 = 3.5\) nên \(BCNN (9,15) = 3^2. 5 = 45\). Do đó ta có thể chọn mẫu chung là 45.
\(\frac{4}{9}=\frac{4.5}{9.5}=\frac{20}{45}\)
\(\frac{7}{15}=\frac{7.3}{15.3}=\frac{21}{45}\)
b) \(\frac{5}{12}; \frac{7}{15}\) và \(\frac{4}{27}\)
Ta có: \(12=2^2.3\); \(15 = 3.5\) ; \(27=3^3\) nên BCNN(12, 15, 27) =\(2^2.3^3.5=540\). Do đó ta có thể chọn mẫu chung là 540.
\(\frac{5}{12}=\frac{5.45}{12.45}=\frac{225}{540}\)
\(\frac{7}{15}=\frac{7.36}{15.36}=\frac{252}{540}\)
\(\frac{4}{27}=\frac{4.20}{27.20}=\frac{80}{540}\)
Quy đồng mẫu số các phân số.
a) $\frac{9}{{14}}$ và $\frac{4}{7}$
b) $\frac{{25}}{9}$ và $\frac{8}{3}$
c) $\frac{6}{7}$ và $\frac{9}{{70}}$
a) $\frac{4}{7} = \frac{{4 \times 2}}{{7 \times 2}} = \frac{8}{{14}}$
Quy đồng mẫu số hai phân số $\frac{9}{{14}}$ và $\frac{4}{7}$ được $\frac{9}{{14}}$ và $\frac{8}{{14}}$
b) $\frac{8}{3} = \frac{{8 \times 3}}{{3 \times 3}} = \frac{{24}}{9}$
Quy đồng mẫu số hai phân số $\frac{{25}}{9}$ và $\frac{8}{3}$ được $\frac{{25}}{9}$ và $\frac{{24}}{9}$
c) $\frac{6}{7} = \frac{{6 \times 10}}{{7 \times 10}} = \frac{{60}}{{70}}$
Quy đồng mẫu số hai phân số $\frac{6}{7}$ và $\frac{9}{{70}}$ được $\frac{{60}}{{70}}$ và $\frac{9}{{70}}$
Câu nào đúng, câu nào sai?
Quy đồng mẫu số hai phân số $\frac{4}{3}$ và $\frac{{12}}{{18}}$, ta được các phân số sau:
a) $\frac{{24}}{{18}}$ và $\frac{{12}}{{18}}$
b) $\frac{4}{3}$ và $\frac{2}{3}$
c) $\frac{{12}}{9}$ và $\frac{{12}}{{18}}$
$\frac{4}{3} = \frac{{4 \times 6}}{{3 \times 6}} = \frac{{24}}{{18}}$
Vậy quy đồng mẫu số hai phân số $\frac{4}{3}$ và $\frac{{12}}{{18}}$, ta được các phân số $\frac{{24}}{{18}}$ và $\frac{{12}}{{18}}$
Vậy câu đúng là a; câu sai là b , c
quy đồng mẫu các phân số sau:
\(a.\frac{3}{8}và\frac{5}{27};b.\frac{-2}{9}và\frac{4}{25};c.\frac{1}{15}và-6\)
a) Quy đồng mẫu các phân số sau:
i.\(\frac{5}{{12}}\) và \(\frac{7}{{30}}\); ii.\(\frac{1}{2};\,\,\frac{3}{5}\) và \(\frac{5}{8}\).
b) Thực hiện các phép tính sau:
i.\(\frac{1}{6} + \frac{5}{8}\); ii.\(\frac{{11}}{24} - \frac{7}{{30}}\)
a)
i.Ta có: BCNN(12, 30) = 60
60 : 12 = 5; 60 : 30 = 2. Do đó:
\(\frac{5}{{12}} = \frac{{5.5}}{{12.5}} = \frac{{25}}{{60}}\) và \(\frac{7}{{30}} = \frac{{7.2}}{{30.2}} = \frac{{14}}{{60}}.\)
ii.Ta có: BCNN(2, 5, 8) = 40
40 : 2 = 20; 40 : 5 = 8; 40 : 8 = 5. Do đó:
\(\frac{1}{2} = \frac{{1.20}}{{2.20}} = \frac{{20}}{{40}}\)
\(\frac{3}{5} = \frac{{3.8}}{{5.8}} = \frac{{24}}{{40}}\)
\(\frac{5}{8} = \frac{{5.5}}{{8.5}} = \frac{{25}}{{40}}\).
b)
i.Ta có: BCNN(6, 8) = 24
24 : 6 = 4; 24: 8 = 3. Do đó
\(\begin{array}{l}\frac{1}{6} + \frac{5}{8} = \frac{{1.4}}{{6.4}} + \frac{{5.3}}{{8.3}}\\ = \frac{4}{{24}} + \frac{{15}}{{24}} = \frac{{19}}{{24}}.\end{array}\)
ii. Ta có: BCNN(24, 30) = 120
120: 24 = 5; 120: 30 = 4. Do đó:
\(\begin{array}{l}\frac{{11}}{{24}} - \frac{7}{{30}} = \frac{{11.5}}{{24.5}} - \frac{{7.4}}{{30.4}}\\ = \frac{{55}}{{120}} - \frac{{28}}{{120}} = \frac{{27}}{{120}} = \frac{9}{{40}}\end{array}\)
Quy đồng mẫu số các phân số sau (có sử dụng bội chung nhỏ nhất):
\(\)a) \(\frac{3}{{16}}\) và \(\frac{5}{{24}}\); b) \(\frac{3}{{20}};\,\,\frac{{11}}{{30}}\) và \(\frac{7}{{15}}\).
a) Ta có: BCNN(16, 24) = 48
48 : 16 = 3; 48 : 24 = 2. Do đó:
\(\frac{3}{{16}} = \frac{{3.3}}{{16.3}} = \frac{9}{{48}}\)
\(\frac{5}{{24}} = \frac{{5.2}}{{24.2}} = \frac{{10}}{{48}}\).
b) Ta có: BCNN(20, 30, 15) = 60
60 : 20 = 3; 60 : 30 = 2; 60 : 15 = 4. Do đó:
\(\frac{3}{{20}} = \frac{{3.3}}{{20.3}} = \frac{9}{{60}}\)
\(\frac{{11}}{{30}} = \frac{{11.2}}{{30.2}} = \frac{{22}}{{60}}\)
\(\frac{7}{{15}} = \frac{{7.4}}{{15.4}} = \frac{{28}}{{60}}\).