\((2x+3)\left(\dfrac{3x+8}{2-7x}+1\right)=(x-5)\left(\dfrac{3x+8}{2-7x}+1\right)\)
Giải phương trình:
\(\left(2x+3\right)\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)
giải phương trình:
\(\left(2x+3\right)\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)
\(\left(2x+3\right)\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)
ĐK: \(x\ne\dfrac{2}{7}\)
\(\Leftrightarrow\left(2x+3\right)\left(3x+8+2-7x\right)=\left(x-5\right)\left(3x+8+2-7x\right)\\ \Leftrightarrow\left(2x+3\right)\left(10-4x\right)=\left(x-5\right)\left(10-4x\right)\\ \Leftrightarrow\left(10-4x\right)\left(2x+3-x+5\right)=0\\ \Leftrightarrow\left(10-4x\right)\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}10-4x=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\left(TM\right)\\x=-8\left(TM\right)\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{5}{2};-8\right\}\)
1) giải phương trình :
a) \(\left(2+3\right)\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)
b) \(\dfrac{7x+10}{x+1}\left(x^2-x-2\right)-\dfrac{7x+10}{x+1}\left(2x^2-3x-5\right)=0\)
c) \(\dfrac{2x+5}{x+3}+1=\dfrac{4}{x^2+2x-3}-\dfrac{3x-1}{1-x}\)
d) \(\dfrac{13}{2x^2+x-21}+\dfrac{1}{2x+7}+\dfrac{6}{9-x^2}=0\)
i) \(\dfrac{x-49}{50}+\dfrac{x-50}{49}=\dfrac{49}{x-50}+\dfrac{50}{x-49}\)
k) \(\dfrac{1+\dfrac{x}{x+3}}{1-\dfrac{x}{x+3}}=3\)
b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)
d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)
\(\Leftrightarrow x^2+14x+68=0\)
hay \(x\in\varnothing\)
Giải các phương trình :
a) \(\dfrac{1}{2x-3}-\dfrac{3}{x\left(2x-3\right)}=\dfrac{5}{x}\)
b) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
c) \(\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{x^2-4}\)
d) \(\left(2x+3\right)\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)
1) \(\dfrac{7x-3}{x-1}\) = \(\dfrac{2}{3}\)
2) \(\dfrac{2\left(3-7x\right)}{1+x}\) = \(\dfrac{1}{2}\)
3) \(\dfrac{x^{2^{ }}-6}{x}\) = x + \(\dfrac{3}{2}\)
4) \(\dfrac{5}{3x+2}\) = 2x - 1
5) \(\dfrac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}\) = 0
6) \(\dfrac{1}{x-2}\) + 3 = \(\dfrac{3-x}{x-2}\)
1/ ĐKXĐ : \(x\ne1\)
\(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\)
\(\Leftrightarrow21x-9=2x-2\)
\(\Leftrightarrow19x=7\Leftrightarrow x=\dfrac{7}{19}\left(tm\right)\)
Vậy...
b/ \(\dfrac{2\left(3-7x\right)}{1+x}=\dfrac{1}{2}\) ĐKXĐ : \(x\ne-1\)
\(\Leftrightarrow12-28x=1+x\)
\(\Leftrightarrow11=29x\Leftrightarrow x=\dfrac{11}{29}\) \(\left(tm\right)\)
Vậy....
c/ ĐKXĐ : \(x\ne0\)
\(\dfrac{x^2-6}{x}=x+\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{x^2-6}{x}=\dfrac{2x+3}{2}\)
\(\Leftrightarrow2x^2-12=2x^2+3x\)
\(\Leftrightarrow3x=-12\Leftrightarrow x=-4\) \(\left(tm\right)\)
Vậy...
4/ ĐKXĐ : \(x\ne-\dfrac{2}{3}\)
\(\dfrac{5}{3x+2}=2x-1\)
\(\Leftrightarrow\left(2x-1\right)\left(3x+2\right)=5\)
\(\Leftrightarrow6x^2+4x-3x-2=5\)
\(\Leftrightarrow6x^2+x-7=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{6}\\x=1\end{matrix}\right.\)
Vậy....
5,6 Tương tự nhé !
1)ĐKXĐ: \(x\ne1\)
Ta có: \(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\)
\(\Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\)
\(\Leftrightarrow21x-9=2x-2\)
\(\Leftrightarrow21x-9-2x+2=0\)
\(\Leftrightarrow19x-7=0\)
\(\Leftrightarrow19x=7\)
\(\Leftrightarrow x=\dfrac{7}{19}\)(nhận)
Vậy: \(S=\left\{\dfrac{7}{19}\right\}\)
2) ĐKXĐ: \(x\ne-1\)
Ta có: \(\dfrac{2\left(3-7x\right)}{1+x}=\dfrac{1}{2}\)
\(\Leftrightarrow4\left(3-7x\right)=x+1\)
\(\Leftrightarrow12-28x-x-1=0\)
\(\Leftrightarrow-29x+11=0\)
\(\Leftrightarrow-29x=-11\)
\(\Leftrightarrow x=\dfrac{11}{29}\)
Vậy: \(S=\left\{\dfrac{11}{29}\right\}\)
3) ĐKXĐ: \(x\ne0\)
Ta có: \(\dfrac{x^2-6}{x}=x+\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{x^2-6}{x}=\dfrac{2x+3}{2}\)
\(\Leftrightarrow2\left(x^2-6\right)=x\left(2x+3\right)\)
\(\Leftrightarrow2x^2-12=2x^2+6x\)
\(\Leftrightarrow2x^2-12-2x^2-6x=0\)
\(\Leftrightarrow-6x-12=0\)
\(\Leftrightarrow-6x=12\)
\(\Leftrightarrow x=-2\)
Vậy: S={-2}
a/8(3x-2) - 13x =5(12 - 3x) +7x
b/\(\dfrac{5x}{x+2}-\dfrac{3}{x-2}+\dfrac{3x^2+6}{\left(x-2\right)\left(x+2\right)}=0\)
c/\(\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)
Giải:
a) \(8\left(3x-2\right)-13x=5\left(12-3x\right)+7x\)
\(\Leftrightarrow24x-16-13x=60-15x+7x\)
\(\Leftrightarrow24x-13x+15x-7x=60+16\)
\(\Leftrightarrow19x=76\)
\(\Leftrightarrow x=\dfrac{76}{19}=4\)
Vậy ...
b) \(\dfrac{5x}{x+2}-\dfrac{3}{x-2}+\dfrac{3x^2+6}{\left(x-2\right)\left(x+2\right)}=0\) (1)
ĐKXĐ: \(x\ne\pm2\)
\(\left(1\right)\Leftrightarrow\dfrac{5x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{3x^2+6}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow5x\left(x-2\right)-3\left(x+2\right)+3x^2+6=0\)
\(\Leftrightarrow5x^2-10x-3x-6+3x^2+6=0\)
\(\Leftrightarrow8x^2-13x=0\)
\(\Leftrightarrow x\left(8x-13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\8x-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=\dfrac{13}{8}\left(TM\right)\end{matrix}\right.\)
Vậy ...
c) \(\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\) (2)
ĐKXĐ: \(x\ne-1;x\ne3\)
\(\left(2\right)\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{4x}{2\left(x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow x\left(x+1\right)+x\left(x-3\right)=4x\)
\(\Leftrightarrow x\left(x+1+x-3\right)=4x\)
\(\Leftrightarrow x\left(2x-2\right)=4x\)
\(\Leftrightarrow2x-2=4\)
\(\Leftrightarrow x=3\)
Vậy ...
Tìm x
\(a,3-x=x+1,8\)
\(b,2x-5=7x+35\)
\(c,2\left(x+10\right)=3\left(x-6\right)\)
\(d,8\left(x-\dfrac{3}{8}\right)+1=6\left(\dfrac{1}{6}+x\right)+x\)
\(e,\dfrac{2}{9}-3x=\dfrac{4}{3}-x\)
\(g,\dfrac{1}{2}x+\dfrac{5}{6}=\dfrac{3}{4}x-\dfrac{1}{2}\)
\(h,x-4=\dfrac{5}{6}\left(6-\dfrac{6}{5}x\right)\)
\(k,7x^2-11=6x^2-2\)
\(m,5\left(x+3.2^3\right)=10^2\)
\(n,\dfrac{4}{9}-(\dfrac{1}{6^2})=\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}\)
\(a,3-x=x+1,8\)
\(\Rightarrow-x-x=1,8-3\)
\(\Rightarrow-2x=-1,2\)
\(\Rightarrow x=0,6\)
\(b,2x-5=7x+35\)
\(\Rightarrow2x-7x=35+5\)
\(\Rightarrow-5x=40\)
\(\Rightarrow x=-8\)
\(c,2\left(x+10\right)=3\left(x-6\right)\)
\(\Rightarrow2x+20=3x-18\)
\(\Rightarrow2x-3x=-18-20\)
\(\Rightarrow-x=-38\)
\(\Rightarrow x=38\)
\(d,8\left(x-\dfrac{3}{8}\right)+1=6\left(\dfrac{1}{6}+x\right)+x\)
\(\Rightarrow8x-3+1=1+6x+x\)
\(\Rightarrow8x-3=7x\)
\(\Rightarrow8x-7x=3\)
\(\Rightarrow x=3\)
\(e,\dfrac{2}{9}-3x=\dfrac{4}{3}-x\)
\(\Rightarrow-3x+x=\dfrac{4}{3}-\dfrac{2}{9}\)
\(\Rightarrow-2x=\dfrac{10}{9}\)
\(\Rightarrow x=-\dfrac{5}{9}\)
\(g,\dfrac{1}{2}x+\dfrac{5}{6}=\dfrac{3}{4}x-\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{2}x-\dfrac{3}{4}x=-\dfrac{1}{2}-\dfrac{5}{6}\)
\(\Rightarrow-\dfrac{1}{4}x=-\dfrac{4}{3}\)
\(\Rightarrow x=\dfrac{16}{3}\)
\(h,x-4=\dfrac{5}{6}\left(6-\dfrac{6}{5}x\right)\)
\(\Rightarrow x-4=5-x\)
\(\Rightarrow x+x=5+4\)
\(\Rightarrow2x=9\)
\(\Rightarrow x=\dfrac{9}{2}\)
\(k,7x^2-11=6x^2-2\)
\(\Rightarrow7x^2-6x^2=-2+11\)
\(\Rightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
\(m,5\left(x+3\cdot2^3\right)=10^2\)
\(\Rightarrow5\left(x+24\right)=100\)
\(\Rightarrow x+24=20\)
\(\Rightarrow x=-4\)
\(n,\dfrac{4}{9}-\left(\dfrac{1}{6^2}\right)=\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{4}{9}-\dfrac{1}{36}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{5}{12}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2=0\)
\(\Rightarrow x-\dfrac{2}{3}=0\Rightarrow x=\dfrac{2}{3}\)
#\(Urushi\text{☕}\)
a: 3-x=x+1,8
=>-2x=-1,2
=>x=0,6
b: 2x-5=7x+35
=>-5x=40
=>x=-8
c: 2(x+10)=3(x-6)
=>3x-18=2x+20
=>x=38
d; 8(x-3/8)+1=6(1/6+x)+x
=>8x-3+1=1+6x+x
=>8x-2=7x+1
=>x=3
e: =>-3x+x=4/3-2/9
=>-2x=12/9-2/9=10/9
=>x=-5/9
g: =>3/4x-1/2x=5/6+1/2
=>1/4x=5/6+3/6=8/6=4/3
=>x=4/3*4=16/3
h: =>x-4=-x+5
=>2x=9
=>x=9/2
Giải các phương trình sau:
\(h.\dfrac{3\left(2x-1\right)}{4}-\dfrac{3x+1}{10}+1=\dfrac{2\left(3x+2\right)}{5}\)
\(i.\dfrac{\left(2x+1\right)^2}{5}-\dfrac{\left(x-1\right)^2}{3}=\dfrac{7x^2-14x-5}{15}\)
\(k.x+\dfrac{2x+\dfrac{x-1}{5}}{3}=1-\dfrac{3x-\dfrac{1-2x}{3}}{5}\)
\(i.\dfrac{\left(2x+1\right)^2}{5}-\dfrac{\left(x-1\right)^2}{3}=\dfrac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\dfrac{4x^2+4x+1}{5}-\dfrac{x^2-2x+1}{3}=\dfrac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\dfrac{12x^2+12x+3}{15}-\dfrac{5x^2-10x+5}{15}=\dfrac{7x^2-14x-5}{15}\)
\(\Leftrightarrow12x^2+12x+3-5x^2+10x-5=7x^2-14x-5\)
\(\Leftrightarrow36x=-3\)
\(\Leftrightarrow x=-\dfrac{1}{12}\)
\(k.x+\dfrac{2x+\dfrac{x-1}{5}}{3}=1-\dfrac{3x-\dfrac{1-2x}{3}}{5}\)
\(\Leftrightarrow\dfrac{15x}{15}+\dfrac{10x+x-1}{15}=\dfrac{15}{15}-\dfrac{9x-1+2x}{15}\)
\(\Leftrightarrow15x+9x-1=14-7x\)
\(\Leftrightarrow31x=15\)
\(\Leftrightarrow x=\dfrac{15}{31}\)
1. \(\dfrac{5\left(x-1\right)+2}{6}-\dfrac{7x-1}{4}=\dfrac{2\left(2x+1\right)}{7}-5\)
2. \(x-\dfrac{3\left(x+30\right)}{15}-24\dfrac{1}{2}=\dfrac{7x}{10}-\dfrac{2\left(10x+2\right)}{5}\)
3. \(14\dfrac{1}{2}-\dfrac{2\left(x+3\right)}{5}=\dfrac{3x}{2}-\dfrac{2\left(x-7\right)}{3}\)
4. \(\dfrac{x+1}{3}+\dfrac{3\left(2x+1\right)}{4}=\dfrac{2x+3\left(x+1\right)}{6}+\dfrac{7+12x}{12}\)
5. \(\dfrac{3\left(2x-1\right)}{4}-\dfrac{3x+1}{10}+1=\dfrac{2\left(3x+2\right)}{5}\)
6. \(x-\dfrac{3}{17}\left(2x-1\right)=\dfrac{7}{34}\left(1-2x\right)+\dfrac{10x-3}{2}\)
7. \(\dfrac{3\left(x-3\right)}{4}+\dfrac{4x-10,5}{10}=\dfrac{3\left(x+1\right)}{5}+6\)
8. \(\dfrac{2\left(3x+1\right)+1}{4}-5=\dfrac{2\left(3x-1\right)}{5}-\dfrac{3x+2}{10}\)