Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quyết Tâm Chiến Thắng
Xem chi tiết
Trần Việt Anh
11 tháng 3 2019 lúc 20:16

9xy+3x+3y=51 (x, y thuộc Z; x, y>0)
<=> 9xy+3x+3y+1=52
<=> 3x(3y+1)+(3y+1)=52
<=> (3y+1)(3x+1)=52=13.4=26.2=1.52
Vif x, y >0 => (3y+1)>1 và (3x+1) >1
TH1: 3y+1 =13 và 3x+1=4 => y=4 và x=1 (nhận)
TH2: 3y +1 =26 và 3x+1=2 => y=25/3 và x=1/3 (loại)
Với x, y có thể đổi chỗ cho nhau trong phương trình trên.
Vậy (x;y)=(1;4) và (4;1)

Trần Việt Anh
11 tháng 3 2019 lúc 20:18

x^2 - 25 = y(y + 6) 

<> x^2 - 25 + 9 = y^2 + 6y + 9 

<> x^2 - 16 = (y + 3)^2 

<> x^2 - (y + 3)^2 = 16 

<>(x - y - 3)(x + y +3) = 16 

vi x,y nguyên nên xay ra các trường hợp sau 

+ x - y - 3 = 16 và x + y + 3 = 1 giải hệ này loại 

+ x - y -3 = 8 và x + y + 3 = 2 

<>x = 5 và y = -6 

tương tự 

..

Trần Việt Anh
11 tháng 3 2019 lúc 20:19

a,xy-4x=35-5y

<=>xy-4x+5y=35

<=>xy-4x+5y-20=35-20

<=>x(y-4)+5(y-4)=15

<=>(x+5)(y-4)=15=1.15=15.1=......

hattori heiji
Xem chi tiết
Phương Trâm
5 tháng 12 2017 lúc 20:48

Ta có:

\(9xy+3x+3y=51 \)

\(\Leftrightarrow9xy+3x+3y+1=52 \)

\(\Leftrightarrow3x(3y+1)+(3y+1)=52 \)

\(\Leftrightarrow\)\((3y+1)(3x+1)=52\)

Do \(x,y\in N^{\text{*}}\) nên \(3x+1\) , \(3y+1\) là các stn lớn hơn \(1\) và chia cho \(3\)cũng dư \(1\).

Mặt khác: \(52=4.13\)

- TH1:

\(\left\{{}\begin{matrix}3x+1=4\\3y+1=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=4\end{matrix}\right.\)

- TH2:

\(\left\{{}\begin{matrix}3x+1=13\\3y+1=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=1\end{matrix}\right.\)

Đạt Trần Tiến
5 tháng 12 2017 lúc 21:06

Ta có:9xy+3x+3y=51

<=>3x(3y+1)+3y+1=52

<=>(3x+1)(3y+1)=52

Vì x,y là số nguyên dương=> 3x+1, 3y+1 là số nguyên dương

=> 3x+1 \(\in Ư(52)\)={1,2,4,13,26,52}

Mà x>0=>3x+1>1

Ta có 3x+1 chia 3 dư 1

=> 3x+1\(\in\){4,13}

=>x\(\in\){1,4}

=>y\(\in\){4,1}

Vậy (x,y)\(\in\){(1,4);(4,1)}

Nguyen Thi Thu Ha
Xem chi tiết
thư ngọc
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 7 2017 lúc 16:54

Đáp án C.

Từ giả thiết ta có

  ln x + y + 1 + 3 x + y + 1 = ln 3 x y + 3.3 x y   (*)

Xét  f t = ln t + 3 t  hàm trên  0 ; + ∞ , ta có  f ' t = 1 t + 3 > , ∀ t > 0

Do đó  * ⇔ x + y + 1 = 3 x y ⇔ 3 x y − 1 = x + y ≥ 2 x y ⇔ 3 xy − 2 x y − 1 ≥ 0

Suy ra  x y ≥ 1 ⇒ x y ≥ 1.

nguyen hoang
Xem chi tiết
tth_new
15 tháng 3 2017 lúc 7:33

\(2x^2+3y^2-5xy-x+3y-4=0\\ \) 

Chả hiểu,mình mới học lớp 5 à

Siêu Nhân Lê
Xem chi tiết
Siêu Nhân Lê
Xem chi tiết
Alan Walker
Xem chi tiết
Hồng Quang
11 tháng 3 2018 lúc 20:55

P/s câu sau nha

9xy+3x+3y=51 (x, y thuộc Z; x, y>0)
<=> 9xy+3x+3y+1=52
<=> 3x(3y+1)+(3y+1)=52
<=> (3y+1)(3x+1)=52=13.4=26.2=1.52
Vif x, y >0 => (3y+1)>1 và (3x+1) >1
TH1: 3y+1 =13 và 3x+1=4 => y=4 và x=1 (nhận)
TH2: 3y +1 =26 và 3x+1=2 => y=25/3 và x=1/3 (loại)
Với x, y có thể đổi chỗ cho nhau trong phương trình trên.
Vậy (x;y)=(1;4) và (4;1)

a) Biến đổi đẳng thức đã cho về dạng ( x = y + 1 ) ( x - y - 1 ) = 12 sau đó bạn lập luận x+y+1>x-y-1 và x + y + 1 và x - y - 1 là các ước của 12 rồi bạn tự làm tiếp các trường hợp