tính : 2x - 7m + y khi 2x + y = 35 và m = 2
Tính
2x - 7m + y khi 2x + y = 35 và m = 2
Help me !
2x - 7m + y = (2x + y) - 7m
Ta có: m = 2 => 7m = 7.2 = 14
Ta có: (2x + y) - 14
Thế 2x + y = 35 vào (2x + y) - 14 (hay 7m)
Ta được: 35 - 14 = 21
Vậy 2x - 7m + y = 21 khi 2x + y = 35 và m = 2
\(2x-7m+y=\left(2x+y\right)-7m=35-7.2=35-14=21\)
Trương Hồng Hạnh
Trần Quỳnh Mai
Nguyễn Thị Thu An
y= {x2-2x-8 khi x≤2
y= {2x-12 khi x>2
Gọi M , m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số khi x ϵ [1;-4] . Tính M+m
y= {x2-2x-8 khi x≤2
y= {2x-12 khi x>2
Gọi M , m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số khi x ϵ [-1;4] . Tính M+m
Xét trên \(\left[-1;2\right]\Rightarrow y=x^2-2x-8\) có \(-\dfrac{b}{2a}=1\)
\(y\left(-1\right)=-5;y\left(1\right)=-9;y\left(2\right)=-8\)
Xét trên \((2;4]\Rightarrow y=2x-12\)
\(y\left(4\right)=-4\)
So sánh các giá trị trên, ta được \(M=-4;m=-9\)
\(\Rightarrow M+m=-13\)
cho hpt\(\hept{\begin{cases}2x+5y=7m+2\\2x+3m=m+2\end{cases}}\) Tìm giá trị cua m để hpt có nghiệm duy nhất thỏa man 2x+y=5
\(\hept{\begin{cases}2x+5y=7m+2\\2x+3y=m+2\end{cases}}\Rightarrow2y=6m\)
\(\hept{\begin{cases}2x+3y=m+2\\2x+y=5\end{cases}}\Rightarrow2y=m-3\)
\(\Rightarrow6m=m-3\Leftrightarrow m=-\frac{3}{5}\)
Thử lại thỏa mãn.
cho đa thức M=2x^2y-xy^2+3x-2y và N=2xy^2-2x^2y-5x+2y
a) tính A=M+N,B=N-M
b) tính giá trị của đa thức B khi x=2 và y^2=16
a ) A = M + N = ( 2x2y - xy2 + 3x - 2y ) + ( 2xy2 - 2x2y - 5x + 2y )
= 2x2y - xy2 + 3x - 2y + 2xy2 - 2x2y - 5x + 2y
= ( 2x2y - 2x2y ) + ( -xy2 + 2xy2 ) + ( 3x - 5x ) + ( - 2y + 2y )
= 0 + ( -1 +2 ) xy2 + ( 3 - 5 )x + 0
= xy2 - 2x
Vậy A = M + N = xy2 - 2x
B = N - M = 2xy2 - 2x2y - 5x + 2y - ( 2x2y - xy2 + 3x - 2y )
= 2xy2 - 2x2y - 5x + 2y - 2x2y + xy2 - 3x + 2y
= ( 2xy2 + xy2 ) + ( -2x2y - 2x2y ) + ( - 5x - 3x ) + ( 2y + 2y )
= ( 2 + 1 )xy2 + ( -2 - 2 )x2y + ( - 5 - 3 )x + ( 2 + 2 )y
= 3xy2 - 4x2y - 8x + 4y
Vậy B = 3xy2 - 4x2y - 8x + 4y
cho (d):y=(3-m)x+m-5
tìm m để (d) // (d'):y=2x+3. Khi đó hãy tính khoảng cách giữa 2 đường thẳng (d) và (d')
Để (d)//(d') thì \(\left\{{}\begin{matrix}3-m=2\\m-5\ne3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=1\\m\ne8\end{matrix}\right.\)
=>m=1
=>(d): y=(3-1)x+1-5=2x-4
Ta có: (d): y=2x-4; (d'): y=2x+3
Lấy A(3;2) thuộc (d)
=>KHoảng cách từ (d) đến (d') sẽ là khoảng cách từ A đến (d')
(d'): y=2x+3
=>2x-y+3=0
Khoảng cách từ A đến (d') là:
\(\dfrac{\left|2\cdot3+\left(-1\right)\cdot2+3\right|}{\sqrt{2^2+\left(-1\right)^2}}=\dfrac{7}{\sqrt{5}}=\dfrac{7\sqrt{5}}{5}\)
=>\(d\left(\left(d\right);\left(d'\right)\right)=\dfrac{7\sqrt{5}}{5}\)
Tìm tất cả các giá trị thực của tham số m để đường thẳng d: y = (3m + 2)x − 7m − 1 vuông góc với đường △ : y = 2x − 1.
A. m = 0
B. m = - 5 6
C. m < 5 6
D. m > - 1 2
Tìm tất cả các giá trị thực của tham số m để đường thẳng (d): y = (3m + 2)x -7m – 1 vuông góc với đường thẳng ( ∆ ) : y = 2 x - 1
A. m = 0.
B.
C.
D.
Để đường thẳng (d) vuông góc với đường thẳng thì 2(3m + 2) = -1 hay:
Chọn B.
Một mảnh vườn hình chữ nhật với độ dài hai cạnh là 2x+y(m) và 2x-y(m).
a) Viết đa thức biểu thị chu vi mảnh vườn theo x và y.
b) Viết đa thức biểu thị diện tích mảnh vườn theo x và y.
c) Tính diện tích của mảnh vườn khi x=3,y=2.
\(a,Chu.vi:2.\left(2x+y+2x-y\right)=2.4x=8x\left(m\right)\\ b,Diện.tích:\left(2x+y\right)\left(2x-y\right)=\left(2x\right)^2-y^2=4x^2-y^2\left(m^2\right)\\ c,Thay:x=3;y=2.vào.biểu.thức.tính.diện.tích.thì.diện.tích.mảnh.vườn.là:\\ 4x^2-y^2=4.3^2-2^2=32\left(m^2\right)\)
a) Đa thức biểu thị chu vi mảnh vườn là:
\(2\cdot\left(2x+y+2x-y\right)=8x\left(m\right)\)
b) Đa thức biểu thị diện tích mảnh vườn là:
\(\left(2x+y\right)\left(2x-y\right)=4x^2-y^2\left(m^2\right)\)
c) Diện tích mảnh vườn khi \(x=3;y=2\) bằng:
\(4\cdot3^2-2^2\\=4\cdot9-4\\=36-4=32\)
a) Đa thức biểu thị chu vi hình chữ nhật là:
\(\left(2x+y+2x-y\right)\cdot2=4x\cdot2=8x\left(m\right)\)
b) Đa thức biểu thị diện tích hình chữ nhật là:
\(\left(2x+y\right)\left(2x-y\right)=\left(2x\right)^2-y^2=4x^2-y^2\left(m^2\right)\)
c) Diện tích của mảnh vườn là:
\(4\cdot3^2-2^2=32\left(m^2\right)\)