Cho hình chóp SABCD đáy là hình vuông cạnh a. SA=a căn 3. SA vuông góc với đáy. Tính khoảng cách a)SB đến CD b)AD đến SB c)AB đến SD
Cho hình chóp SABCD đáy là hình thoi tâm O cạnh a. (SAD) và (SAC) cùng vuông góc với đáy. Góc BAD=120°, SA=a căn 2. Tính khoảng cách từ a)SB đến CD b)BD đến SC c)SC đến AB
Đề bài sai. (SAD) và (SAC) cùng vuông góc với đáy, thế thì ta sẽ có là hình thoi ACBD, vô lý
Cho hình chóp SABCD. Đáy là hình vuông cạnh 2a; SA= a căn 5. SA vuông góc với đáy a) Tính góc giữa SC và (SAD); góc giữa SB và (SAC) b)Tính góc giữa (SBC) và (ABCD) c)Tính khoảng cách từ SD đến BC
Cho hình chóp SABCD. Đáy là hình vuông cạnh 2a; SA= a căn 5. SA vuông góc với đáy a) Tính góc giữa SC và (SAD); góc giữa SB và (SAC) b)Tính góc giữa (SBC) và (ABCD) c)Tính khoảng cách từ SD đến BC
Cho hình chóp SABCD đáy là hình vuông cạnh a. SA=a căn 3. SA vuông góc với đáy. Tính khoảng cách a)SC đến BD b)SC đến AD
a/ Kẻ \(CE//BD\Rightarrow BD//\left(SCE\right)\Rightarrow d\left(SC,BD\right)=d\left(BD,\left(SCE\right)\right)=d\left(B,\left(SCE\right)\right)\)
\(AB\cap\left(SCE\right)=\left\{E\right\}\Rightarrow\dfrac{d\left(B,\left(SCE\right)\right)}{d\left(A,\left(SCE\right)\right)}=\dfrac{EB}{EA}=\dfrac{1}{2}\)
\(\widehat{CAE}=\dfrac{1}{2}\widehat{DAB};\widehat{AEC}=\widehat{BDC}=\dfrac{1}{2}\widehat{ADC};\widehat{DAB}+\widehat{ADC}=180^0\Rightarrow\widehat{CAE}+\widehat{AEC}=90^0\Rightarrow\widehat{ACE}=90^0\)
\(\Rightarrow AC\perp EC\)
\(\left\{{}\begin{matrix}SA\perp CE\\AC\perp CE\end{matrix}\right.\Rightarrow CE\perp\left(SAC\right)\Rightarrow\left(SCE\right)\perp\left(SAC\right)\)
Kẻ \(AH\perp SC\Rightarrow AH\perp\left(SCE\right)\Rightarrow d\left(A,\left(SCE\right)\right)=AH=\dfrac{SA.AC}{\sqrt{SA^2+AC^2}}=..\)
\(\Rightarrow d\left(SC,BD\right)=d\left(B,\left(SCE\right)\right)=\dfrac{AH}{2}=...\)
b/ \(AD//BC\Rightarrow AD//\left(SBC\right)\Rightarrow d\left(SC,AD\right)=d\left(AD,\left(SBC\right)\right)=d\left(A,\left(SBC\right)\right)\)
Kẻ \(AK\perp BC\Rightarrow\left\{{}\begin{matrix}SA\perp BC\\AK\perp BC\end{matrix}\right.\Rightarrow\left(SBC\right)\perp\left(SAK\right)\)
Kẻ \(AM\perp SK\Rightarrow AM\perp\left(SBC\right)\Rightarrow d\left(A,\left(SBC\right)\right)=AM=\dfrac{SA.AK}{\sqrt{SA^2+AK^2}}=...=d\left(SC,AD\right)\)
Cho hình chóp SABCD. ABCD là hình vuông cạnh a, tam giác SAD đều, (SAD) vuông góc với đáy. I,J là trung điểm của AD và BC. Tính khoảng cách từ a)AD đến SB b)SA đến BD
Cho hình chóp SABCD đáy là hình thang vuông tại A và B. AD=2a; AB=BC=a. SC tạo với đáy 1 góc 60°. Tính khoảng cách biết SA vuông góc với đáy a)SA đến BC b)SA đến CD c)AD đến SC
Cho hình chóp SABCD là hình thang vuông tại A và B. AD=2a, SA=a căn 3, AB=BC=a. SA vuông góc với đáy. Tính khoảng cách từ. a)A đến (SBC) b)A đến (SCD) c)BC đến (SAD)
Cho hình chóp SABCD có đáy là hình thoi cạnh a góc ABC=60°, cạnh bên SA=SB=SC . Mặt bên (SCD) Tạo với đát góc 60° tính khoảng cách từ AB đến SD
Gọi O là tâm đáy, M là trung điểm AB và H là hình chiếu vuông góc của S lên (ABCD)
\(\Rightarrow\) H trùng tâm của tam giác đều ABC đồng thời HM là trung tuyến (kiêm đường cao) của tam giác ABC
\(\widehat{DCH}=\widehat{ACH}+\widehat{ACD}=\dfrac{1}{2}\widehat{ACB}+\widehat{ACD}=\dfrac{1}{2}.60^0+60^0=90^0\)
\(\Rightarrow HC\perp CD\)
\(\Rightarrow CD\perp\left(SCH\right)\Rightarrow\widehat{SCH}\) là góc giữa (SCD) và (ABCD) \(\Rightarrow\widehat{SCH}=60^0\)
\(CH=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\Rightarrow SH=CH.tan60^0=a\)
\(AB||CD\Rightarrow AB||\left(SCD\right)\Rightarrow d\left(AB;SD\right)=d\left(AB;\left(SCD\right)\right)=d\left(M;\left(SCD\right)\right)\)
MH cắt (SCD) tại C, mà \(CM=\dfrac{3}{2}CH\Rightarrow d\left(M;\left(SCD\right)\right)=\dfrac{3}{2}d\left(H;\left(SCD\right)\right)\)
Trong tam giác vuông SCH, kẻ \(HK\perp SC\Rightarrow HK\perp\left(SCD\right)\Rightarrow HK=d\left(H;\left(SCD\right)\right)\)
\(\dfrac{1}{HK^2}=\dfrac{1}{SH^2}+\dfrac{1}{CH^2}=\dfrac{4}{3a^2}\Rightarrow HK=\dfrac{a\sqrt{3}}{2}\)
\(\Rightarrow d\left(AB;SD\right)=\dfrac{3a\sqrt{3}}{4}\)
Cho hình chóp SABCD có đáy là hình thang vuông tại A, AB=BC=a; AD= 2a; SA vuông với đáy; SA = a. M,N lần lượt là trung điểm của SB, CD. Tính:
a, (SC, đáy)
b, (SB, SAC)
c, (SD, SAB)
d, (SN, SAC)
e, (SA, SCD)
f, (SA, SBC)
h, (MN, SCA) (xác định góc)
a: \(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)
(SC;(ABCD))=(CS;CA)=góc SCA
tan SCA=SA/AC=1/căn 2
=>góc SCA=35 độ
b:
Kẻ BH vuông góc AC tại H
(SB;SAC)=(SB;SH)=góc BSH
\(HB=\dfrac{a\cdot a}{a\sqrt{2}}=a\cdot\dfrac{\sqrt{2}}{2}\)
AH=AC/2=a*căn 2/2
=>\(SH=\sqrt{a^2+\dfrac{1}{2}a^2}=a\sqrt{\dfrac{3}{2}}\)
\(SH=\dfrac{a\sqrt{6}}{2};HB=\dfrac{a\sqrt{2}}{2};SB=a\sqrt{2}\)
\(cosBSH=\dfrac{SB^2+SH^2-BH^2}{2\cdot SB\cdot SH}=\dfrac{\sqrt{3}}{2}\)
=>góc BSH=30 độ
c: (SD;(SAB))=(SD;SA)=góc ASD
tan ASD=AD/AS=2
nên góc ASD=63 độ