Cho abc=1
CMR: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+a+1}=1\)
Đề:
Cho biết abc = 1. Chứng minh rằng:\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\) là hằng số.
Giải:
Thay 1 = abc vào biểu thức trên, ta có:
\(\frac{a}{ab+a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+abc}\)
\(=\frac{a}{a\left(b+1+ab\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{c\left(a+1+ab\right)}\)
\(=\frac{1}{b+1+ab}+\frac{1}{c+1+ac}+\frac{1}{a+1+ab}\)
\(=\frac{abc}{b+abc+ab}+\frac{1}{c+1+ac}+\frac{1}{a+1+ab}\)
\(=\frac{abc}{b\left(1+ac+a\right)}+\frac{1}{c+1+ac}+\frac{1}{a+1+ab}\)
\(=\frac{ac}{1+ac+a}+\frac{1}{c+1+ac}+\frac{1}{a+1+ab}\)
\(=\frac{ac+1}{c+1+ac}+\frac{1}{a+1+ab}\)
\(=\frac{ac+1}{c+abc+ac}+\frac{1}{a+1+ab}\)
\(=\frac{ac+1}{c\left(1+ab+a\right)}+\frac{1}{a+1+ab}\)
\(=\frac{ac+1}{c\left(1+ab+a\right)}+\frac{c}{c\left(a+1+ab\right)}\) \(MTC:c\left(a+1+ab\right)\)
\(=\frac{ac+1+c}{c\left(1+ab+a\right)}\)
\(=\frac{ac+abc+c}{c+abc+ac}\)
\(=1\)
Vậy \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\) là hằng số khi abc = 1 (đpcm)
Trịnh Trân Trân <3
Cho a,b,c>0;abc=1. Chứng minh rằng : \(\frac{ab}{a^4+b^4+ab}+\frac{bc}{b^4+c^4+bc}+\frac{ac}{c^4+a^4+ac}\)≤1
Ta chứng minh được
\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
\(\Rightarrow P\le\sum\frac{ab}{ab\left(a^2+b^2\right)+ab}=\sum\frac{1}{a^2+b^2+1}\)
Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)
Ta lại chứng minh được:
\(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\)
\(\Rightarrow P\le\sum\frac{1}{x^3+y^3+1}\le\sum\frac{xyz}{xy\left(x+y\right)+xyz}=\sum\frac{z}{x+y+z}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Đây là bài thi vào 10 của Thanh Hóa thì phải
Cho a, b, c > 0 thỏa mãn a+b+c=1
Tính \(P=\left(\frac{a-bc}{a+bc}+\frac{b-ac}{b+ac}+\frac{c-ab}{c+ab}\right):\frac{ab+bc+ca+3abc}{ab+bc-abc}.\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Cho abc=1.Chứng minh \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\)
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{ac}{abc+ac+c}+\frac{abc}{abc^2+abc+ac}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)
Cho abc = 1. CMR:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\)
Bài 1 Cho a,b,c,d là 3 số không âm CMR
\(a,\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{a+c}\le\frac{a+b+c}{2}\)
\(b,\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{a+d}\ge\frac{a+b+c+d}{2}\)
Bài 2 Cho a,b,c là 3 số không âm thỏa mãn a+b+c=1 CMR
\(a,\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le3,5\)
\(b,\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}\le\sqrt{6}\)
Bài 3 Cho \(|x|< 1;|y|< 1CMR\) \(\frac{1}{1-x^2}+\frac{1}{1-y^2}\ge\frac{2}{1-xy}\)
Làm bài này một hồi chắc bay não:v
Bài 1:
a) Áp dụng BĐT AM-GM:
\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi a = b = c.
b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.
Bài 2:
a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v
b) Theo BĐT Bunhicopxki:
\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)
Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)
Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:
\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)
Nói trước là bài 3 em không chắc, tự dưng thấy tại sao lại có đk \(\left|x\right|< 1;\left|y\right|< 1?!?\) Chẳng lẽ lời giải của em sai hay là đề thừa?
tth-new ơi Bài 1 câu a áp dụng BĐT AM-GM cho 2 số nào thế ạ
Cho ΔABC(BC=a; AC=b; AB=c), chứng minh \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{1}{2Rr}\)
Cho a, b, c > 0 thỏa mãn a+b+c=1
Tính \(P=\left(\frac{a-bc}{a+bc}+\frac{b-ac}{b+ac}+\frac{c-ab}{c+ab}\right):\frac{ab+bc+ca+3abc}{ab+bc-abc}.\)
Cho a+b+c=1 ( a,b,c khác 1 và 2 ) CMR: \(\frac{c+ab}{a^2+b^2+abc-1}+\frac{a+bc}{b^2+c^2+abc-1}+\frac{b+ac}{a^2+c^2+acb-1}=\frac{bc+ac+ab+8}{(a-2)(b-2)(c-2)}\)