Tính
\(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)
Cho a,b,c >0 thỏa mãn ab+bc+ca=3abc
Tìm GTNN của \(Q=\frac{a^2}{c\cdot\left(c^2+a^2\right)}+\frac{b^2}{a\cdot\left(a^2+b^2\right)}+\frac{c^2}{b\cdot\left(b^2+c^2\right)}\)
Cho a, b, c > 0 thỏa mãn a + b + c = 3. Tìm GTNN :
\(P=\frac{a^2\left(b+1\right)}{a+b+ab}+\frac{b^2\left(c+1\right)}{b+c+bc}+\frac{c^2\left(a+1\right)}{c+a+ac}\)
cho các số thực dương a,b,c thỏa mãn a+b+c=3. chứng m,inh rằng \(\frac{a^2\left(b+1\right)}{a+b+ab}+\frac{b^2\left(c+1\right)}{b+c+bc}+\frac{c^2\left(a+1\right)}{c+a+ca}\)
cho các số thực dương a,b,c thỏa mãn a+b+c=3. chứng m,inh rằng \(\frac{a^2\left(b+1\right)}{a+b+ab}+\frac{b^2\left(c+1\right)}{b+c+bc}+\frac{c^2\left(a+1\right)}{c+a+ca}\)
cho a, b, c la cac so thuc duong thoa man a + b + c =abc chung minh rang :
\(\frac{1}{a^2\left(1+bc\right)}+\frac{1}{b^2\left(1+ac\right)}+\frac{1}{c^2\left(1+ab\right)}\le\frac{1}{4}\)
Cho ba số a,b,c khác 0 thỏa mãn:
\(\left(a+b+c\right)^{^2}=a^{^2}+b^{^2}+c^{^2}\)
Tính giá trị biểu thức: \(A=\frac{bc}{a^{^2}+2bc}+\frac{ac}{a^{^2}+2ac}+\frac{ab}{c^{^2}+2ab}\)
Bài 1 :
Với \(a>0;b>0;c>0.\) Hãy CM các BĐT sau :
a) \(\frac{ab}{c}+\frac{bc}{a}\ge2b\)
\(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)
Cho a, b, c là các số thực không âm thỏa mãn không có hai số nào đồng thời bằng 0. CMR:\(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\ge\frac{9}{4\left(ab+bc+ca\right)}\)
Một lời giải bằng SOS, uvw, muirhead đang chờ các bác:)