Đề:
Cho biết abc = 1. Chứng minh rằng:\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\) là hằng số.
Giải:
Thay 1 = abc vào biểu thức trên, ta có:
\(\frac{a}{ab+a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+abc}\)
\(=\frac{a}{a\left(b+1+ab\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{c\left(a+1+ab\right)}\)
\(=\frac{1}{b+1+ab}+\frac{1}{c+1+ac}+\frac{1}{a+1+ab}\)
\(=\frac{abc}{b+abc+ab}+\frac{1}{c+1+ac}+\frac{1}{a+1+ab}\)
\(=\frac{abc}{b\left(1+ac+a\right)}+\frac{1}{c+1+ac}+\frac{1}{a+1+ab}\)
\(=\frac{ac}{1+ac+a}+\frac{1}{c+1+ac}+\frac{1}{a+1+ab}\)
\(=\frac{ac+1}{c+1+ac}+\frac{1}{a+1+ab}\)
\(=\frac{ac+1}{c+abc+ac}+\frac{1}{a+1+ab}\)
\(=\frac{ac+1}{c\left(1+ab+a\right)}+\frac{1}{a+1+ab}\)
\(=\frac{ac+1}{c\left(1+ab+a\right)}+\frac{c}{c\left(a+1+ab\right)}\) \(MTC:c\left(a+1+ab\right)\)
\(=\frac{ac+1+c}{c\left(1+ab+a\right)}\)
\(=\frac{ac+abc+c}{c+abc+ac}\)
\(=1\)
Vậy \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\) là hằng số khi abc = 1 (đpcm)
Trịnh Trân Trân <3