Đại số lớp 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hữu Tuyên

Cho a, b, c > 0. Chứng minh rằng: \(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\text{ ≤ }\frac{a+b+c}{2abc}\)

Lightning Farron
10 tháng 1 2017 lúc 19:53

Ta có: \(a^2+bc\ge2\sqrt{a^2bc}=2a\sqrt{bc}\)\(\Rightarrow\frac{1}{a^2+bc}\le\frac{1}{2a\sqrt{bc}}\)

Tương tự ta có:

\(\frac{1}{b^2+ac}\le\frac{1}{2b\sqrt{ac}};\frac{1}{c^2+ab}\le\frac{1}{2c\sqrt{ab}}\)

Cộng theo vế ta có:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ac}}+\frac{1}{2c\sqrt{ab}}\)

\(\Leftrightarrow\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{\sqrt{bc}}{2abc}+\frac{\sqrt{ac}}{2abc}+\frac{\sqrt{ab}}{2abc}\)

\(\Leftrightarrow\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{2abc}\le\frac{a+b+c}{2abc}\)

Đẳng thức xảy ra khi \(a=b=c\)


Các câu hỏi tương tự
Đạt Nguyễn
Xem chi tiết
Yoona
Xem chi tiết
HỒ THỊ THÙY LINH
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
♡ ♡ ♡ ♡ ♡
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
Mai Chung
Xem chi tiết
Nguyen Bao Linh
Xem chi tiết
Hoàng Nguyễn Quỳnh Khanh
Xem chi tiết