Đại số lớp 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Huyền Anh

cho a,b>0 và a+b=1 Tìm Min của

a, A=\(\frac{1}{ab}+\frac{1}{a^2+b^2}\)

b,B=\(\frac{2}{ab}+\frac{3}{a^2+b^2}\)

c,C=\(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)

bài 2 Tìm Min

D=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\) (a,b,c>0)

Luân Đào
21 tháng 5 2019 lúc 19:02

a.

\(A=\frac{1}{ab}+\frac{1}{a^2+b^2}=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\)

\(\ge\frac{4}{a^2+2ab+b^2}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=6\)

Dấu "=" khi \(a=b=\frac{1}{2}\)

b.

\(B=\frac{2}{ab}+\frac{3}{a^2+b^2}=3\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\)

\(\ge3\cdot\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=14\)

Dấu "=" khi \(a=b=\frac{1}{2}\)

c.

Ta có:

\(x^2+y^2\ge2xy\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\) với mọi x,y

Áp dụng ta có:

\(C=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\ge\frac{\left(a+b+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(1+\frac{4}{a+b}\right)^2}{2}=\frac{25}{2}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

2.

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2\right]\ge\left(\sqrt{x}\cdot\frac{a}{\sqrt{x}}+\sqrt{y}\cdot\frac{b}{\sqrt{y}}\right)^2\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{a^2}{x}+\frac{b^2}{y}\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

Áp dụng nó ta chứng minh được:

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

Áp dụng vào bài làm:

\(D=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\)

\(\ge\frac{\left(a+b+c\right)^2}{ab+ca+bc+ab+ca+bc}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)


Các câu hỏi tương tự
Phạm Thùy Linh
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
Yoona
Xem chi tiết
Nguyen Bao Linh
Xem chi tiết
Đạt Nguyễn
Xem chi tiết
Nguyen Bao Linh
Xem chi tiết
Chu Ngọc Ngân Giang
Xem chi tiết
Thiên Tuyết Linh
Xem chi tiết
♡ ♡ ♡ ♡ ♡
Xem chi tiết