Bài 1: Cho a,b,c đôi một khác nhau. Chứng minh rằng:
\(\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}+\frac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}=1\)
Bài 2: CMR: nếu \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\) và x=y+z thì:
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
Mọi người làm nhanh giúp em với ạ!
2) 1/x - 1/y - 1/z = 1
=> (1/x - 1/y - 1/z)^2 = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 - 2/xy - 2/xz + 2/yz = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 - 2.(1/xy + 1/xz - 1/yz) = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 - 2.(z+y-x/xyz) = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 - 2.0 = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 = 1 (đpcm)