ĐKXĐ : \(a+b\ne0;a+c\ne0;b+c\ne0.\)
Từ \(\left(1\right)\Leftrightarrow\left(\frac{x-ab}{a+b}-c\right)+\left(\frac{x-ac}{a+c}-b\right)+\left(\frac{x-bc}{b+c}-a\right)=0\)
\(\Leftrightarrow\frac{x-ab-ac-bc}{a+b}+\frac{x-ac-ab-bc}{a+c}+\frac{a-bc-ab-ac}{b+c}=0\)
\(\Leftrightarrow\left(x-ab-bc-ca\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=0\)
\(\left(1\right)\) có vô số nghiệm \(\Leftrightarrow\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=0.\left(2\right)\)
Chẳng hạn ta chọn \(a=1,b=1.\)Để ( 2 ) xảy ra ta chọn c sao cho :
\(\frac{1}{2}+\frac{1}{1+c}+\frac{1}{1+c}=0\Leftrightarrow\frac{2}{1+c}=-\frac{1}{2}\Leftrightarrow c=-5.\)
Như vậy \(\left(1\right)\) có vô số nghiệm , chẳng hạn khi \(a=1,b=1,c=-5.\)
....................................................................................................................................................................................................................................