Tìm x,y biết
\(\dfrac{x}{-3}\)=\(\dfrac{y}{2}\)=\(\dfrac{z}{5}\),xyz=240
a, 2x = 5y và xy = 250
b, \(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{4}\) và xyz = 192
c, x : y : z= 5: 2: (-3) và xyz = 240
a) \(2x=5y\)⇒\(x=\dfrac{5}{2}y\)⇒\(xy=\dfrac{5}{2}y^2\)
Thay \(xy=250\), ta có:
\(250=\dfrac{5}{2}y^2\)
⇒\(y^2=100\)⇒\(y=+-10\)
+) \(y=10\text{⇒}x=250:10=25\)
+) \(y=-10\text{⇒}x=250:-10=-25\)
\(a,2x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}=k\\ \Rightarrow x=5k;y=2k\\ xy=250\Rightarrow5k\cdot2k=250\Rightarrow k^2=25\Rightarrow\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=25;y=10\\x=-25;y=-10\end{matrix}\right.\\ b,\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{4}=a\Rightarrow x=3a;y=2a;z=4a\\ xyz=192\Rightarrow24a^3=192\Rightarrow a^3=8\Rightarrow a=2\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=4\\z=8\end{matrix}\right.\\ c,\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{z}{-3}=q\Rightarrow x=5q;y=2q;z=-3q\\ xyz=240\Rightarrow-30q^3=240\Rightarrow q^3=-8\Rightarrow q=-2\\ \Rightarrow\left\{{}\begin{matrix}x=-10\\y=-4\\z=6\end{matrix}\right.\)
a. \(\left\{{}\begin{matrix}2x=5y\\xy=250\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-5y=0\\2xy=500\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2xy-5y^2=0\\2xy=500\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y^2=500\\2xy=500\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=10\\x=25\end{matrix}\right.\)
Tìm x,y,z biết:
a)\(\dfrac{x-1}{2}\)=\(\dfrac{y-2}{3}\)=\(\dfrac{z-3}{4}\) và 2x+3y-z=50
b)\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\)và xyz=810
a, Ta có :
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\Rightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{4+9-4}=\dfrac{50-5}{9}=5\)
\(\Rightarrow x=11;y=17;z=23\)
b, Đặt \(\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\Rightarrow xyz=810\)
\(\Rightarrow2k.3k.5k=810\Leftrightarrow30k^3=810\Leftrightarrow k^3=27\Leftrightarrow k=3\)
\(\Rightarrow x=6;y=9;z=15\)
a) Ta có: \(\dfrac{x-1}{2}=\dfrac{2x-2}{4};\dfrac{y-2}{3}=\dfrac{3y-6}{9};\dfrac{z-3}{4}\)
Áp dụng t/c dtsbn:
\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x-2+3y-6-z+3}{4+9-4}=5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=5\\\dfrac{y-2}{3}=5\\\dfrac{z-3}{4}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=12\end{matrix}\right.\)
b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
xyz = 810
=> 2k.3k.5k = 810
=> k = 3
\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=9\\z=15\end{matrix}\right.\)
a) Ta có: \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)
nên \(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)
mà 2x+3y-z=50
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{4+9-4}=\dfrac{50-5}{9}=5\)
Do đó:
\(\left\{{}\begin{matrix}x-1=10\\y-2=15\\z-3=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\)
b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
Ta có: xyz=810
\(\Leftrightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\)
\(\Leftrightarrow k=3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot3=6\\y=3k=3\cdot3=6\\z=5k=5\cdot3=15\end{matrix}\right.\)
Tìm x,y,z biết: \(\dfrac{4}{x+1} =\dfrac{2}{y-2}=\dfrac{3}{z+2} \) và \(xyz=12\)
\(\dfrac{4}{x+1}=\dfrac{2}{y-2}=\dfrac{3}{z+2}\)
=>\(\dfrac{x+1}{4}=\dfrac{y-2}{2}=\dfrac{z+2}{3}=k\)
=>x+1=4k; y-2=2k; z+2=3k
=>x=4k-1; y=2k+2; z=3k-2
xyz=12
=>(4k-1)(2k+2)(3k-2)=12
=>(4k-1)(k+1)(3k-2)=6
=>(4k-1)(3k^2-2k+3k-2)=6
=>(3k^2+k-2)(4k-1)=6
=>12k^3-3k^2+4k^2-k-8k+2-6=0
=>12k^3+k^2-9k-7=0
=>
\(\dfrac{4}{x+1}=\dfrac{2}{y-2}=\dfrac{3}{z+2}\)
=>\(\dfrac{x+1}{4}=\dfrac{y-2}{2}=\dfrac{z+2}{3}=k\)
=>x+1=4k; y-2=2k; z+2=3k
=>x=4k-1; y=2k+2; z=3k-2
xyz=12
=>(4k-1)(2k+2)(3k-2)=12
=>(4k-1)(k+1)(3k-2)=6
=>(4k-1)(3k^2-2k+3k-2)=6
=>(3k^2+k-2)(4k-1)=6
=>12k^3-3k^2+4k^2-k-8k+2-6=0
=>12k^3+k^2-9k-4=0
=>k=1
=>x=4k-1=3; y=2k+2=4; z=3k-2=3-2=1
Tìm x,y,z biết
\(\dfrac{10}{x-5}=\dfrac{6}{y-9}=\dfrac{14}{z-21}\) và xyz= 6720
tìm x,y,z:
\(\dfrac{4}{x+1}=\dfrac{z}{y-2}=\dfrac{3}{z+2}\) và xyz=12
Phân thức số 2 có thật sự là $\frac{z}{y-2}$ không bạn? Bạn xem lại đề.
Với các số thực dương xyz đôi một khác nhau thỏa xyz=1 và x,y,z khác 1 tìm minP=logx\(\dfrac{y}{z}\)+logy\(\dfrac{z}{x}\)+logz\(\dfrac{x}{y}\)+2(log\(\dfrac{y}{z}\)(x)+log\(\dfrac{z}{x}\)(y)+log\(\dfrac{x}{y}\)(z))
tìm x y z biết
\(\dfrac{3}{x-1}=\dfrac{4}{y-2}=\dfrac{5}{z-3}\),xyz=192
\(\dfrac{3}{x-1}=\dfrac{4}{y-2}=\dfrac{5}{z-3}\)
\(\Leftrightarrow\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z-3}{5}=k\)
=>x-1=3k; y-2=4k; z-3=5k
=>x=3k+1;y=4k+3;z=5k+3
xyz=192
=>(3k+1)(4k+3)(5k+3)=192
=>(12k^2+13k+3)(5k+3)=192
=>60k^3+36k^2+65k^2+39k+15k+9=192
=>60k^3+101k^2+54k-183=0
=>k=0,92
=>x=3k+1=3,76; y=4k+3=6,68; z=7,6
cho x,y,z dương thỏa \(xyz=1\)
tìm min \(P=\dfrac{x+2}{x^3\left(y+z\right)}+\dfrac{y+2}{y^3\left(z+x\right)}+\dfrac{z+2}{z^3\left(x+y\right)}\)
Ta có nhận xét sau:
\(\dfrac{x+2}{x^3\left(y+z\right)}=\dfrac{1}{x^2\left(y+z\right)}+\dfrac{2}{x^3\left(y+z\right)}=\dfrac{yz}{zx+xy}+\dfrac{2\left(yz\right)^2}{zx+xy}\)
Tương tự với các phân thức còn lại
Ta đặt:
\(\left\{{}\begin{matrix}a=xy\\b=yz\\c=zx\end{matrix}\right.\)
\(\Rightarrow abc=1\) và \(a,b,c>0\)
Biểu thức P trở thành:
\(P=\Sigma_{cyc}\dfrac{a}{b+c}+2\Sigma_{cyc}\dfrac{a^2}{b+c}\)
Dễ thấy:
\(\Sigma_{cyc}\dfrac{a}{b+c}\ge\dfrac{3}{2}\) (Nesbit)
\(\Sigma_{cyc}\dfrac{a^2}{b+c}\ge\dfrac{a+b+c}{2}\ge\dfrac{3\sqrt[3]{abc}}{2}=\dfrac{3}{2}\)
Do đó:
\(P\ge\dfrac{3}{2}+2.\dfrac{3}{2}=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Tìm x, y, z biết
a) \(\dfrac{x}{y+z+1}\) =\(\dfrac{y}{x+y+2}=\dfrac{z}{x+y-3}\)
b)\(6\left(x-\dfrac{1}{y}\right)=3\left(y-\dfrac{1}{2}\right)=2\left(z-\dfrac{1}{x}\right)=xyz-\dfrac{1}{xyz}\)
Giúp mik nha!
a)Ta có: \(\frac{x}{y+z+1}=\frac{y}{x+y+2}=\frac{z}{x+y-3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y+z+1}=\frac{y}{x+y+2}=\frac{z}{x+y-3}\)
\(=\frac{x+y+z}{y+z+1+x+y+2+x+y-3}\)
\(=\frac{x+y+z}{2x+2y+2z}\)
\(=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
Tìm x, y, z biết
a.\(\dfrac{x}{4}=\dfrac{y}{3},\dfrac{y}{5}=\dfrac{z}{3}\) và x-y+100= z
b.\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}\) và 5z-3x-4y= 50
c.\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) và xyz= -30
d.\(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\) và 2x-y= 5,5
\(x-y+100=z\Rightarrow x-y-z=-100\)
\(\dfrac{x}{4}=\dfrac{y}{3}\Rightarrow\dfrac{x}{20}=\dfrac{y}{15};\dfrac{y}{5}=\dfrac{z}{3}\Rightarrow\dfrac{y}{15}=\dfrac{z}{9}\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
\(\Rightarrow x=20.25=500;y=15.25=375;z=9.25=225\)
b/ \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}\)
\(\Rightarrow\dfrac{3x-3}{6}=\dfrac{4y+12}{16}=\dfrac{5z-25}{30}=\dfrac{5z-25-4y-12-3x+3}{30-16-6}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=2\\\dfrac{y+3}{4}=2\\\dfrac{z-5}{6}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=5\\z=17\end{matrix}\right.\)
c/ \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=a\Rightarrow\left\{{}\begin{matrix}x=2a\\y=3a\\z=5a\end{matrix}\right.\) \(\Rightarrow xyz=2a.3a.5a=30a^3=-30\Rightarrow a^3=-1\Rightarrow a=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=2a=-2\\y=3a=-3\\z=5a=-5\end{matrix}\right.\)
d/ \(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\Rightarrow\dfrac{2x}{2,2}=\dfrac{y}{1,3}=\dfrac{z}{1,4}=\dfrac{2x-y}{2,2-1,3}=\dfrac{5,5}{0,9}=\dfrac{55}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1,1.55}{9}=\dfrac{121}{18}\\y=\dfrac{1,3.55}{9}=\dfrac{143}{18}\\z=\dfrac{1,4.55}{9}=\dfrac{77}{9}\end{matrix}\right.\) Nghi ngờ bạn chép đề câu này sai, số xấu quá