Cho tam giác đều ABC nội tiếp đường tròn (O; 2cm). Tính AB.
Cho tam giác ABC đều cạnh a nội tiếp đường tròn (O). Tính bán kính đường tròn nội tiếp tam giác ABC.
A. r = a 3 3
B. r = a 3 2
C. r = a 3 6
D. r = a 2 3
Chọn đáp án C.
Gọi M là trung điểm của BC:
Do tam giác ABC đều nên tâm đường tròn nội tiếp tam giác ABC là trọng tâm, tâm đường tròn ngoại tiếp tam giác ABC
Áp dụng định lí Pytago vào tam giác ABM ta có:
a) Vẽ tam giác đều ABC cạnh a = 3cm.
b) Vẽ tiếp đường tròn (O; R) ngoại tiếp tam giác đều ABC. Tính R.
c) Vẽ tiếp đường tròn (O; r) nội tiếp tam giác đều ABC. Tính r.
d) Vẽ tiếp tam giác đều IJK ngoại tiếp đường tròn (O; R).
a) Vẽ tam giác đều ABC có cạnh bằng 3cm (dùng thước thẳng và compa).
+ Dựng đoạn thẳng AB = 3cm .
+Dựng cung tròn (A, 3) và cung tròn (B, 3). Hai cung tròn này cắt nhau tại điểm C.
Nối A với C, B với C ta được tam giác đều ABC cạnh 3cm.
b) * Vẽ đường tròn:
Tâm O của đường tròn ngoại tiếp tam giác đều ABC là giao điểm của ba đường trung trực.
Dựng đường trung trực của đoạn thẳng BC và CA.
Hai đường trung trực cắt nhau tại O.
Vẽ đường tròn tâm O, bán kính OA = OB = OC ta được đường tròn ngoại tiếp tam giác ABC.
* Tính bán kính đường tròn.
+ Gọi A’ là trung điểm BC ⇒ A’C = BC/2 = a/2.
và AA’ ⊥ BC
+ Do tam giác ABC là tam giác đều nên 3 đường trung trực đồng thời là ba đường trung tuyến
=> Giao điểm ba đường trung trực cũng là giao điểm ba đường trung tuyến
Suy ra O là trọng tâm tam giác ABC.
Vậy R = √3 (cm).
c) * Vẽ đường tròn:
Gọi A’; B’; C’ lần lượt là chân đường phân giác trong ứng với các góc
Do tam giác ABC là tam giác đều nên A’; B’; C’ đồng thời là trung điểm BC; CA; AB.
Đường tròn (O; r) là đường tròn tâm O; bán kính OA’ = OB’ = OC’.
* Tính r:
d) Vẽ các tiếp tuyến với đường tròn (O; R) tại A, B, C. Ba tiếp tuyến này cắt nhau tại I, J, K. Ta có ΔIJK là tam giác đều ngoại tiếp (O; R).
a) Vẽ tam giác đều ABC cạnh a = 3 cm.
b) Vẽ tiếp đường tròn (O; R) ngoại tiếp tam giác đều ABC. Tính R.
c) Vẽ tiếp đường tròn (O; r) nội tiếp tam giác đều ABC. Tính r.
d) Vẽ tiếp tam giác đều IJK ngoại tiếp đường tròn (O ; R).
a) Vẽ tam giác đều ABC có cạnh bằng 3cm (dùng thước có chia khoảng và compa)
b) Tâm O của đường tròn ngoại tiếp tam giác đều ABC là giao điểm của ba đường trung trực (đồng thời là ba đường cao, ba trung tuyến, ba phân giác của tam giác đều ABC).
Ta có: R= OA = AA' = . = . = √3 (cm).
c) Đường tròn nội tiếp (O;r) tiếp xúc ba cạnh của tam giác đều ABC tại các trung điểm A', B', C' của các cạnh.
r = OA' = AA' = = (cm)
d) Vẽ các tiếp tuyến với đường tròn (O;R) tại A,B,C. Ba tiếp tuyến này cắt nhau tại I, J, K. Ta có ∆IJK là tam giác đều ngoại tiếp (O;R).
a) Vẽ tam giác đều ABC có cạnh bằng 3cm (dùng thước có chia khoảng và compa)
b) Tâm O của đường tròn ngoại tiếp tam giác đều ABC là giao điểm của ba đường trung trực (đồng thời là ba đường cao, ba trung tuyến, ba phân giác của tam giác đều ABC).
Ta có: R= OA = AA' = . = . = √3 (cm).
c) Đường tròn nội tiếp (O;r) tiếp xúc ba cạnh của tam giác đều ABC tại các trung điểm A', B', C' của các cạnh.
r = OA' = AA' = = (cm)
d) Vẽ các tiếp tuyến với đường tròn (O;R) tại A,B,C. Ba tiếp tuyến này cắt nhau tại I, J, K. Ta có ∆IJK là tam giác đều ngoại tiếp (O;R).
Cho tam giác ABC đều cạnh a nội tiếp đường tròn (O). Tính bán kính R của đường tròn
A. R = a 3 2
B. R = a 3 3
C. R = a 2 3
D. Đáp án khác
Chọn đáp án B.
Do O là tâm của đường tròn ngoại tiếp tam giác đều ABC nên O đồng thời là trọng tâm tam giác ABC.
Gọi M là trung điểm BC:
Cho tam giác ABC có ba góc đều nhọn nội tiếp trong đường tròn (O;R) Các đường cao AD, BE, CF đồng quy
tại H, r là bán kính đường tròn nội tiếp trong tam giác ABC
a) Chúng minh OA vuông góc EF
b) Chứng minh rằng H là tâm đường tròn nội tiếp tam giác DEF
c) Chứng minh rằng nếu AD+BE+CF =9r thì tam giác ABC là tam giác đều
d)Cho AB=\(R\sqrt{2}\),AC=\(R\sqrt{3}\) thì tam giác DEF là hình gì?Vì sao?
Cho tam giác abc đều nội tiếp trong đường tròn tâm O tiếp tuyến tuyến A và b của đường tròn cắt tại D A. Chứng mình tứ giác adbo nội tiếp đường tròn B.chứng mình acbd là hình thoi
a: góc OAD+góc OBD=180 độ
=>OADB nội tiếp
b: góc OAB+góc OBA=1/2*120=60 độ
=>góc AOB=120 độ
=>góc ADB=60 độ
=>CA=AD=DB=CB
=>CADB là hình thoi
Cho đường tròn (O;1cm) nội tiếp tam giác đều ABC.Tính diện tích tam giác ABC đó.
hãy giúp tôi các bạn trẻ
Cho tam giác ABC đều cạnh a nội tiếp đường tròn tâm O. Tinh bán kính đường tròn theo a.
Cho tam giác $ABC$ có ba góc đều nhọn nội tiếp đường tròn tâm $O$, hai đường cao $BD$ và $CE$. Chứng minh tứ giác $BCDE$ nội tiếp được trong một đường tròn.
Ta có :
Do BD và CE là các đường cao nên
suy ra góc BEC = góc BDC =90 độ
Xét tứ giác BCDE,có:
góc BEC=góc BDC
vậy BCDE là tứ giác nội tiếp(đpcm)
xet tu giac BCDE co:
goc BEC = BDC = 90 (vi BD va CE la cac duong cao)
⇒ tu giac bcde noi tiep (theo dau hieu nhan biet tu giac noi tiep) (dieu phai chung minh)
Cho hình chóp tam giác đều S.ABC. Cho hình chóp tam giác đều S và có đường tròn đường tròn đáy là đường tròn nội tiếp tam giác ABC gọi là hình nón nội tiếp hình chóp S.ABC, hình nón có đỉnh S và có đường tròn đáy là đường tròn ngoại tiếp tam giác ABC gọi là hình nón ngoại tiếp hình chóp S.ABC. Tỉ số thể tích của hình nón nội tiếp và hình nón ngoại tiếp hình chóp đã cho là
A. 1 2
B. 1 4
C. 1 3
D. 2 3