a) Hãy thực hiện hành động: Tung một đồng xu một lần.
b) Xét phép thử “Tung một đồng xu một lần”.
Viết tập hợp Ω (đọc là ô-mê-ga) gồm các kết quả có thể xảy ra đối với mặt xuất hiện của đồng xu. Tập hợp Ω có bao nhiêu phần tử?
tung đồng xu cân đối lên 1 lần , viết tập hợp các kết quả có thể xảy ra đối với mặt hiện của đồng xu
Viết tập hợp \(\Omega \) các kết quả có thể xảy ra đối với mặt xuất hiện của đồng xu sau hai lần tung.
• Tập hợp 2 các kết quả có thể xảy ra đối với mặt xuất hiện của đồng xu sau hai lần tung là\(\Omega = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS;{\rm{ }}NN} \right\}\) , trong đó, chẳng hạn SN là kết quả “Lần thứ nhất đồng xu xuất hiện mặt sấp, lần thứ hai đồng xu xuất hiện mặt ngửa”.
• Tập hợp \(\Omega \) gọi là không gian mẫu trong trò chơi tung một đồng xu hai lần liên tiếp.
a) Quan sát đồng xu gồm hai mặt như sau:
Quy ước: Mặt xuất hiện chữ N trên đồng xu là mặt ngửa, mặt xuất hiện chữ S trên đồng xu là mặt sấp.
b) Tung đồng xu ở câu a một lần. Nêu những khả năng có thể xảy ra đối với mặt xuất hiện của đồng xu.
a) Học sinh quan sát đồng xu.
b) Đồng xu có hai mặt: Mặt ngửa và Mặt sấp
Đồng xu có thể xuất hiện mặt ngửa hoặc mặt sấp.
Tung đồng xu 1 lần.
a) Viết tập hợp A các kết quả có thể xảy ra đối với mặt xuất hiện của đồng xu.
b) Viết tập hợp gồm các kết quả có thể xảy ra đối với biến cố B: “Mặt xuất hiện của đồng xu là mặt N”. Mỗi phần tử của tập hợp đó gọi là một kết quả thuận lợi cho biến cố B.
c) Tìm tỉ số của số các kết quả thuận lợi cho biến cố B và số phần tử của tập hợp A.
a) Có 2 khả năng có thể xảy ra đối với mặt xuất hiện của đồng xu là: Sấp (S) và Ngửa (N).
Vậy \(A = \left\{ {S;\,N} \right\}\).
b) Biến cố B: “Mặt xuất hiện của đồng xu là mặt N”
Tập hợp M gồm các kết quả xó thể xảy ra đối với biến cố B là: \(M = \left\{ N \right\}\).
Phần tử N là kết quả thuận lợi cho biến cố B.
c) Số các kết quả thuận lợi của B là: 1
Số phần tử của tập hợp A là: 2
Tỉ số các kết quả thuận lợi cho biến cố B và phần tử của tập hợp A là: \(\frac{1}{2}\)
tung đồng xu 1 lần có bao nhiêu kết quả có thể xảy ra đối với mặt xuất hiện của đồng xu
Tham khảo:
Lời giải: Khi tung đồng xu 1 lần, có hai kết quả có thể xảy ra đối với mặt xuất hiện của đồng xu, đó là: mặt N; mặt S.
: Nếu tung một lúc 2 đồng xu 5 lần liên tiếp có 1 lần xuất hiện mặt SS; 1 lần xuất
hiện mặt NN; 2 lần xuất hiện mặt SN.
a. Các kết quả có thể xảy ra khi gieo 2 đồng xu 5 lần? b. Tính xác suất thực nghiệm xuất hiện mặt SS?
c. Tính xác suất thực nghiệm xuất hiện mặt NN? d. Tính xác suất thực nghiệm xuất hiện mặt SN? e. Tính xác suất thực nghiệm xuất hiện mặt NS?
Xét phép thử “Tung một đồng xu hai lần liên tiếp”. Tính xác suất của biến cố A: “Mặt xuất hiện của đồng xu ở cả hai lần tung là giống nhau”.
+) Không gian mẫu của phép thử là: \(\Omega {\rm{ }} = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS;{\rm{ }}NN} \right\}.\) Vậy \(n\left( \Omega \right) = 4\)
+) Các kết quả thuận lợi cho biến cố A là: \(A{\rm{ }} = {\rm{ }}\left\{ {SS;{\rm{ }}NN} \right\}\). Vậy \(n\left( A \right) = 2\)
+) Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{2}{4} = \frac{1}{2}\)
Nếu tung một lúc 2 đồng xu 5 lần liên tiếp có 1 lần xuất hiện mặt SS; 1 lần xuất
hiện mặt NN; 2 lần xuất hiện mặt SN.
a. Các kết quả có thể xảy ra khi gieo 2 đồng xu 5 lần? b. Tính xác suất thực nghiệm xuất hiện mặt SS?
c. Tính xác suất thực nghiệm xuất hiện mặt NN? d. Tính xác suất thực nghiệm xuất hiện mặt SN? e. Tính xác suất thực nghiệm xuất hiện mặt NS? Nếu tung một lúc 2 đồng xu 5 lần liên tiếp có 1 lần xuất hiện mặt SS; 1 lần xuất
hiện mặt NN; 2 lần xuất hiện mặt SN.
a. Các kết quả có thể xảy ra khi gieo 2 đồng xu 5 lần? b. Tính xác suất thực nghiệm xuất hiện mặt SS?
c. Tính xác suất thực nghiệm xuất hiện mặt NN? d. Tính xác suất thực nghiệm xuất hiện mặt SN? e. Tính xác suất thực nghiệm xuất hiện mặt NS?
Hãy liệt kê tập hợp tất cả các kết quả có thể xảy ra, và tính số phần tử
a) Tung một đồng xu.
b) Tung hai đồng xu.
c) Tung ba đồng xu.
A:
mặt hay đuôi
B:
Mặt, đuôi
đuôi, mặt
Mặt, mặt
Đuôi, đuôi
C:
Mặt, đuôi, mặt
mặt, mặt, mặt
đuôi, đuôi, đuôi
đuôi, mặt, đuôi
đuôi, mặt, mặt
mặt, đuôi, đuôi
Khi tung một đồng xu cân đối và quan sát mặt xuất hiện của nó. Có thể xảy ra mấy kết quả?
A. 1
B. 2
C. 3
D. 4