Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
27 tháng 9 2023 lúc 19:40

a) Các kết quả có thể xảy ra trong 2 lần lấy tấm thẻ từ 2 hộp được thể hiện ở sơ đồ hình cây như hình dưới đây:

b)

Gọi là biến cố “Trong 2 thẻ lấy ra không có thẻ màu đỏ nào” là biến cố đối của biến cố “Trong 2 thẻ lấy ra có ít nhất 2 thẻ màu đỏ”

Dựa vào sơ đồ hình cây ta thấy có tất cả 6 kết quả có thể xảy ra, trong đó có 2 kết quả thuận lợi cho I. Do đó: \(P(A) = \frac{2}{6} = \frac{1}{3}\)

Vậy xác suất của biến cố “Trong 2 thẻ lấy ra có ít nhất 2 thẻ màu đỏ” là \(1 - \frac{1}{3} = \frac{2}{3}\)

Buddy
Xem chi tiết
Bùi Nguyên Khải
22 tháng 8 2023 lúc 10:55

THAM KHẢO:

A = {(2;1);(2;2);(2;3);(2;4);(2;5);(4;1);(4;2);(4;3);(4;4);(4;5)}

B = {(1;2);(2;2);(3;2);(4;2);(5;2);(1;4);(2;4);(3;4);(4;4);(5;4)}

C = {(1;2);(1;4);(2;1);(2;2);(2;3);(2;4);(2;5);(3;2);(3;4);(4;1);(4;2);(4;3);(4;4);(4;5); (5;2);(5;4)}

Big City Boy
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 5 2023 lúc 13:50

Chọn A

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
15 tháng 9 2023 lúc 1:07

Khi lấy 1 tấm thẻ ra khỏi hộp thì số chỉ trên tấm thẻ có thể là: thẻ 3; thẻ 4; thẻ 5; thẻ 6; thẻ 7; thẻ 8; thẻ 9; thẻ 10; thẻ 11; thẻ 12.

Các kết quả cho biến cố \(A\): “ Số ghi trên thẻ lấy ra chia hết cho 3” là thẻ 3; thẻ 3; thẻ 9; thẻ 12.

Các kết quả cho biến cố \(B\): “ Số ghi trên thẻ lấy ra chia hết cho 6” là thẻ 6; thẻ 12.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 8 2019 lúc 8:24

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 1 2019 lúc 14:50

Chọn A.

Lấy ngẫu nhiên tấm thẻ từ 9 tấm thẻ có C 9 2 = 36  cách => số phần tử của không gian mẫu là n Ω = 36 .  

Gọi A: “tích của hai số trên tấm thẻ là một số chẵn”.

Để tích của hai số trên tấm thẻ là một số chẵn thì ít nhất một trong hai tấm thẻ phải là số chẵn. Ta có hai trường hợp

TH1: Cả hai thẻ được lấy ra đều là số chẵn có C 4 2 = 6  cách.

Th2: Hai thẻ lấy ra có một thẻ là số chẵn, một thẻ là số lẻ C 4 1 . C 5 1 = 20  cách.

Số kết quả thuận lợi cho A là n(A) = 6 + 20 = 26.

Vậy xác suất của biến cố A là P A = n A n Ω = 13 18 .

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
27 tháng 9 2023 lúc 19:39

Do các tấm thẻ giống nhau, nên lấy 3 tấm từ 10 tấm không quan tâm thứ tự có \(C_{10}^3 = 120\)cách, suy ra \(n\left( \Omega  \right) = 120\)

Gọi là biến cố “Tích các số ghi trên ba thẻ đó là số chẵn”

Để tích các số trên thẻ là số chẵn thì ít nhất có 1 thẻ là số chẵn

Để chọn ra 3 thẻ thuận lợi cho biến cố ta có 3 khả năng

+) Khả năng 1: 3 thẻ chọn ra có 1 thẻ có số chẵn và 2 thẻ có số lẻ có \(5.C_5^2 = 50\) khả năng

+) Khả năng 2: 3 thẻ chọn ra có 2 thẻ có số chẵn và 1 thẻ có số lẻ có \(C_5^2.5 = 50\) khả năng

+) Khả năng 3: 3 thẻ chọn ra có đều là có số chắn có \(C_5^3 = 10\) khả năng

Suy ra \(n\left( A \right) = 50 + 50 + 10 = 110\)

Vậy xác suất của biến cố là:   \(P(A) = \frac{{110}}{{120}} = \frac{{11}}{{12}}\)

Buddy
Xem chi tiết
HaNa
22 tháng 8 2023 lúc 9:59

a) Tập hợp mô tả biến cố AB:
`AB: { (1, 5), (2, 4), (3, 3) }`

P(AB) = số phần tử trong AB / số phần tử trong không gian mẫu
`P(AB) = 3 / (3 * 5) = 3/15 = 1/5`

b) Một biến cố khác rỗng và xung khắc với cả hai biến cố A và B là biến cố "Tổng các số ghi trên 2 thẻ lớn hơn 6".

$HaNa$

Nobita TV
Xem chi tiết
Akai Haruma
22 tháng 7 2020 lúc 10:44

Lời giải:

Gọi $Q$ là tập hợp tất cả các cách lấy ra $6$ tấm thẻ trong số $20$ tấm thẻ. Ta có: $|Q|=C^6_{20}$

Gọi $A$ là biến cố  trong 6 tấm thẻ có 2 tấm thẻ có tổng bằng $21$. 

Các cặp số có tổng là $21$ là: $(1,20); (2,19); (3,18);...; (10;11)$  (10 cặp). 4 số còn lại ta có $C^4_{18}$ cách chọn.

Do đó số khả năng để trong 6 số có 2 số có tổng bằng $21$ là: $10.C^4_{18}$ 

Do đó xác suất để xảy ra biến cố A là: $\frac{10.C^4_{18}}{C^6_{20}}=\frac{15}{19}$

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 10 2018 lúc 15:04