Cho 3 số thực dương a;b;c thỏa mãn điều kiện a+b+c=1.Tính GTLN của biểu thức
\(P=\frac{ab}{\sqrt{c+ab}}+\frac{bc}{\sqrt{a+bc}}+\frac{ca}{\sqrt{b+ca}}\)
Cho 2 số thực dương a, b thỏa mãn \(a^3+b^3\le1\). Tìm GTLN: \(A=a+4b\)
\(a^3+\dfrac{1}{9}+\dfrac{1}{9}\ge3\sqrt[3]{\dfrac{a^3}{81}}=\dfrac{a}{\sqrt[3]{3}}\)
\(b^3+\dfrac{8}{9}+\dfrac{8}{9}\ge3\sqrt[3]{\dfrac{64b^3}{81}}=\dfrac{4b}{\sqrt[3]{3}}\)
Cộng vế:
\(\dfrac{1}{\sqrt[3]{3}}\left(a+4b\right)\le a^3+b^3+2\le3\)
\(\Rightarrow a+4b\le3\sqrt[3]{3}\)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(\dfrac{1}{\sqrt[3]{9}};\dfrac{2}{\sqrt[3]{9}}\right)\)
Câu 1: Chứng minh \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{(n-1)n}\) với ∀n∈\(N^*\)
Câu 2: Cho a,b,c là các số thực dương. Chứng minh rằng: \(\frac{a^4+b^4+c^4}{a+b+c}\geq abc\).
Câu 3: Cho các số thực dương a,b,c thỏa mãn \(ab+bc+ca=3\). Chứng minh rằng: \(\sqrt{a^6+b^6+1}+\sqrt{b^6+c^6+1}+\sqrt{c^6+a^6+1}\geq 3\sqrt{3}\)
Câu 4: Cho các số thực không âm a,b,c thỏa mãn \(a+b+c=3\).Chứng minh rằng: \(a^3+b^3+c^3\geq 3\)
Câu 5: Với \(a,b,c>0\) thỏa mãn điều kiện \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=1\). Chứng minh rằng: \(\sqrt\frac{b}{a}+\sqrt\frac{c}{b}+\sqrt\frac{a}{c}\leq 1\)
1. Đề thiếu
2. BĐT cần chứng minh tương đương:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Ta có:
\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)
3.
Ta có:
\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)
\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)
\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)
Lại có:
\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)
4.
Ta có:
\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)
\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
5.
Ta có:
\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)
\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)
Câu 1:
\(VT=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(VT=1-\dfrac{1}{n}< 1\) (đpcm)
cho a,b là số thực dương a+2b=3.cm a√(b+2) + b√(a+2) + b√(b+2) ≤3√3
Cho a là số thực dương khác 1. Mệnh đề nào dưới đây đúng với mọi số thực dương x, y
A. log a x y = log a x . log a y
B. log a x y = log a x - log a y
C. log a x y = log a x log a y
D. log a x y = log a x + log a y
Cho a là số thực dương khác 1. Mệnh đề nào dưới đây đúng với mọi số thực dương x, y?
A. log a x y = log a x - log a y
B. log a x y = log a x + log a y
C. log a x y = log a ( x - y )
D. log a x y = log a x log a y
Cho a là số thực dương khác 1. Mệnh đề nào dưới đây đúng với mọi số thực dương x, y ?
Hoạt động 3
a) Với mỗi số thực a, so sánh \(\sqrt {{a^2}} \) và \(\left| a \right|\); \(\sqrt[3]{{{a^3}}}\) và a
b) Cho a, b là hai số thực dương. So sánh: \(\sqrt {a.b} \) và \(\sqrt a .\sqrt b \)
a: \(\sqrt{a^2}=\left|a\right|\)
\(\sqrt[3]{a^3}=a\)
b: \(\sqrt{a\cdot b}=\sqrt{a}\cdot\sqrt{b}\)
Cho a là số thực dương khác 1 và x,y là các số thực dương. Mệnh đề nào dưới đây đúng?
A. log a a 3 = 3
B. log a ( x 2 y ) = 2 log a x log a y
C. log a ( xy ) - log a y = log a x
D. log a xlog a y = log a ( xy )
1.cho a, b,c là các số thực dương thỏa mãn a^3 /(a^2+b^2) + b^3/(b^2+c^2) + c^3/(c^2+a^2) >= (a+b+c)/2
2.cho a, b,c là các số thực dương thỏa mãn (a^3 +b^3+c^3)/2abc + (a^2+ b^2)/c^2 + (b^2+c^2)/(a^2+bc) + (c^2+a^2)/b^2+ac) >= 9/2
1. Cho số thực x. CMR: \(x^4+5>x^2+4x\)
2. Cho số thực x, y thỏa mãn x>y. CMR: \(x^3-3x+4\ge y^3-3y\)
3. Cho a, b là số thực dương thỏa mãn \(a^2+b^2=2\). CMR: \(\left(a+b\right)^5\ge16ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)