Cho đường tròn (O) và dây AB. Điểm M nằm ngoài đường tròn (O) thỏa mãn điểm B nằm trong góc MAO và \(\widehat{MAB}=\dfrac{1}{2}\widehat{AOB}\). Chứng minh đường thẳng MA là tiếp tuyến của đường tròn (O).
(TP HCM - 2020)
Cho đường tròn tâm $O$, bán kính $R$ và điểm $A$ nằm ngoài đường tròn sao cho $OA > 2R$. Từ $A$ kẻ 2 tiếp tuyến $AD;$ $AE$ đến đường tròn $(O)$ ($D$, $E$ là 2 tiếp điểm). Lấy điểm $M$ nằm trên cung nhỏ $\overset{\frown}{DE}$ sao cho $MD > ME$. Tiếp tuyến của đường tròn $(O)$ tại $M$ cắt $AD$; $AE$ lần lượt tại $I$; $J$. Đường thẳng $DE$ cắt $OJ$ tại $F$.
a. Chứng minh: $OJ$ là đường trung trực của đoạn thẳng $ME$ và $\widehat{OMF} = \widehat{OEF}$.
b. Chứng minh: tứ giác $ODIM$ nội tiếp và 5 điểm $I$; $D$; $O$; $F$; $M$ cùng nằm trên một đường tròn.
c. Chứng minh $\widehat{JOM} = \widehat{IOA}$ và $\sin \widehat{IOA} = \dfrac{MF}{IO}$.
Cho 1 điểm M nằm bên ngoài đường tròn (O; 6cm). Kẻ hai tiếp tuyến MN, MP (N, P là hai tiếp điểm) của đường tròn (O). Vẽ cát tuyến MAB của đường trong (O) sao cho đoạn thẳng AB=6cm với A, B thuộc đường tròn (O), A nằm giữa M và B.
a) Chứng minh tứ giác OPMN là tứ giác nội tiếp
b) Gọi H là trung điểm đoạn thẳng AB. So sánh góc MON và góc MHN
c) Tính diện tích hình viên phân giới hạn bởi cung nhỏ AB và dây AB của hình tròn tâm (O)
a: góc ONM+góc OPM=180 độ
=>ONMP nội tiếp
b: góc OHM=góc ONM=90 độ
=>OHNM nội tiếp
=>góc MON=góc MHN
cho đường tròn tâm O và một điểm M nằm ngoài đường tròn . Qua M vẽ các tiếp tuyến MA,MB với đường tròn tâm O . Biết \(\widehat{AMB}\) = 54 độ . Hỏi 2 bán kính OA,OB tạo thành góc ở tâm \(\widehat{AOB}\) bằng bao nhiêu độ
Hình bạn tự vẽ nhé :
Xét tứ giác OAMB có : góc AOB + góc OAM + góc AMB +góc OBM =360 độ
⇒ góc AOB + 90 độ +54 độ +90 độ =360 độ
⇒ góc AOB =360 độ - 90 độ -90 độ -54 độ = 126 độ
Cho đường tròn (0,r) và điểm M nằm ngoài đường tròn . Vẽ 2 tiếp tuyến MA , MB của đường tròn ( AB là tiếp điểm )a, Chứng minh rằng 4 điểm O,A,M,B nằm trên 1 đường trònb, Biết OA = 6 cm , AM = 8cm . Tính số đo góc AMO và độ dài đoạn thẳng ABc, Gọi giao điểm của OM và (O;r) là K . Từ K kẻ KP⊥AM (P∈AM ) ; kẻ KQ ⊥BM ( Q∈BM ) . Chứng minh rằng PQ // AB
cho đường tròn (O) và điểm A nằm ngoài đường tròn (O). Từ A kẻ hai tiếp tuyến AB, AC với đường tròn (O) (B và C là các tiếp điểm). Đường thẳng CO cắt đường tròn (O) tại điểm thứ hai là D; đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là E. H là giao điểm của AO và BC
a) Chứng minh AE.AD=AH.AO=\(AB^2\)
b) Chứng minh \(\widehat{AHE}=\widehat{OED}\)
c) Qua B kẻ đường thẳng vuông góc với CD cắt AD tại F. Chứng minh HF//CD
a) Xét \(\Delta ABE\)và \(\Delta ABD\)có :
\(\widehat{BAE}=\widehat{BAD}\); \(\widehat{ABE}=\widehat{BDE}\)
\(\Rightarrow\Delta ABE\approx\Delta ADB\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AD.AE=AB^2\)( 1 )
Xét \(\Delta ABO\)vuông tại B ( do AB là tiếp tuyến ), đường cao BH ( tự c/m ), ta có hệ thức lượng
\(AH.AO=AB^2\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(AD.AE=AH.AO=AB^2\)
b) \(AD.AE=AH.AO\Rightarrow\frac{AE}{AH}=\frac{AO}{AD}\)
Xét \(\Delta AEH\)và \(\Delta AOD\)có :
\(\frac{AE}{AH}=\frac{AO}{AD}\); \(\widehat{EAH}\)( chung )
\(\Rightarrow\Delta AEH\approx\Delta AOD\left(c.g.c\right)\)\(\Rightarrow\widehat{AHE}=\widehat{ADO}\)( 3 )
Mà \(\Delta ODE\)cân tại O ( do OE = OD ) \(\Rightarrow\widehat{OED}=\widehat{ODE}\)( 4 )
Từ ( 3 ) và ( 4 ) suy ra \(\widehat{AHE}=\widehat{OED}\)
c) đường thẳng qua B vuông góc với CD tại I
Xét hai tam giác vuông BID và CBI có :
\(\widehat{IDB}=\widehat{CBI}\); \(\widehat{BID}=\widehat{BIC}=90^o\)
\(\Rightarrow\Delta BID\approx\Delta CIB\left(g.g\right)\) \(\Rightarrow\frac{ID}{IB}=\frac{IB}{IC}=\frac{DB}{BC}\)
\(\Rightarrow\frac{ID}{IB}.\frac{IB}{IC}=\frac{ID}{IC}=\frac{BD^2}{BC^2}\)
Mặt khác : \(\Delta DAC\)có : BI // AC
\(\Rightarrow\frac{FI}{AC}=\frac{DI}{DC}=\frac{DI}{DI+CI}=\frac{1}{1+\frac{CI}{DI}}=\frac{1}{1+\frac{BC^2}{BD^2}}=\frac{BD^2}{BD^2+BC^2}=\frac{BD^2}{4R^2}\)( R là bán kính )
\(\Rightarrow FI=\frac{BD^2.AC}{4R^2}\)( 5 )
Xét \(\Delta BCD\)và \(\Delta ACO\)có :
\(\widehat{BCD}=\widehat{OAC}\); \(\widehat{CBD}=\widehat{ACO}=90^o\)
\(\Rightarrow\Delta BCD\approx\Delta CAO\left(g.g\right)\)\(\Rightarrow\frac{BC}{AC}=\frac{BD}{OC}\Rightarrow BC=\frac{AC.BD}{R}\)( 6 )
Xét 2 tam giác vuông BIC và BCD có :
\(\widehat{BCD}\)( chung ) ; \(\widehat{BIC}=\widehat{CBD}=90^o\)
\(\Rightarrow\Delta BIC\approx\Delta DBC\)( g.g )
\(\Rightarrow\frac{IB}{BD}=\frac{BC}{CD}\Rightarrow IB=\frac{BC.BD}{2R}\)( 7 )
Từ ( 6 ) và ( 7 ) suy ra : \(IB=\frac{AC.BD^2}{2R^2}\)( 8 )
Từ ( 5 ) và ( 8 ) suy ra : \(IF=\frac{IB}{2}\Rightarrow\)F là trung điểm của IB
\(\Rightarrow HF\)là đường trung bình của \(\Delta BCI\)\(\Rightarrow HF//CD\)
Cho đường tròn ( O). Điểm M nằm ngoài đường tròn. Kẻ các tiếp tuyến MA, MB với đường tròn (A, B là tiếp điểm)
a, Chứng minh OM vuông góc với AB
b, Gọi H là giao điểm của MO và AB. Kẻ đường thẳng MO cắt đường tròn ( O) lần lượt tại hai điểm P, Q ( P nằm giữa M và O). Chứng minh QH.AM=QM.AH
a: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của BA(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của AB
=>MO\(\perp\)AB tại trung điểm H của AB
b: Xét (O) có
\(\widehat{MAP}\) là góc tạo bởi tiếp tuyến AM và dây cung AP
\(\widehat{AQP}\) là góc nội tiếp chắn cung AP
Do đó: \(\widehat{MAP}=\widehat{AQP}\)
=>\(\widehat{MAP}=\widehat{MQA}\)
Xét ΔMAP và ΔMQA có
\(\widehat{MAP}=\widehat{MQA}\)
\(\widehat{AMP}\) chung
Do đó: ΔMAP đồng dạng với ΔMQA
=>\(\dfrac{MA}{MQ}=\dfrac{AP}{QA}\left(1\right)\)
Xét (O) có
ΔQAP nội tiếp
QP là đường kính
Do đó: ΔQAP vuông tại A
Xét ΔHAP vuông tại H và ΔHQA vuông tại H có
\(\widehat{HAP}=\widehat{HQA}\left(=90^0-\widehat{HPA}\right)\)
Do đó: ΔHAP đồng dạng với ΔHQA
=>\(\dfrac{HA}{HQ}=\dfrac{AP}{QA}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{MA}{MQ}=\dfrac{HA}{HQ}\)
=>\(MA\cdot HQ=MQ\cdot HA\)
Qua điểm M nằm bên ngoài đường tròn (O), vẽ tiếp tuyến AB và cát tuyến MAB của đường tròn . Tia phân giác của góc ACB cắt dây AB tại I. Chứng minh MC=MI
tiếp tuyến AB và cát tuyến MAB là sao bạn ?
Cho đường tròn (O) điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME < MF).Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳng MO)
a, Chứng minh MA. MB = ME.MF
b, Gọi H là hình chiêu vuông góc của điểm c lên đuờng thẳng MO. Chứng minh tứ giác AHOB nội tiếp
c, Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường tròn đường kính MF; nửa đường tròn này cắt tiếp tuyến tại E của (O) ở K. Gọi S là giao điểm của hai đường thẳng CO và KF. Chứng minh các đường thẳng MS và KC vuông góc nhau
d, Gọi P và Q lần lượt là tâm đường tròn ngoại tiếp các tam giác EFS và ABS và T là trung điểm của KS. Chứng minh ba điểm P, Q, T thẳng hàng
a, HS tự chứng minh
b, MH.MO = MA.MB ( = M C 2 )
=> ∆MAH:∆MOB (c.g.c)
=> M H A ^ = M B O ^
M B O ^ + A H O ^ = M H A ^ + A H O ^ = 180 0
=> AHOB nội tiếp
c, M K 2 = ME.MF = M C 2 Þ MK = MC
∆MKS = ∆MCS (ch-cgv) => SK = SC
=> MS là đường trung trực của KC
=> MS ^ KC tại trung của CK
d, Gọi MS ∩ KC = I
MI.MS = ME.MF = M C 2 => EISF nội tiếp đường tròn tâm P Þ PI = PS. (1)
MI.MS = MA.MB (= M C 2 ) => AISB nội tiếp đường tròn tâm Q Þ QI = QS. (2)
Mà IT = TS = TK (do DIKS vuông tại I). (3)
Từ (1), (2) và (3) => P, T, Q thuộc đường trung trực của IS => P, T, Q thẳng hàng
Cho ( O ) và điểm M nằm ngoài đường tròn ( O ) . Qua M vẽ 2 tiếp tuyến MA , MB với đường tròn ( A , B là tiếp điểm ).C là điểm nằm trên đường tròn (M;MA) và nằm trong ( O ). Các tia AC , AB cắt ( O ) lần lượt tại A1 và B1 . Chứng minh : A1 , O và B1 thẳng hàng .