Bài 3. Tiếp tuyến của đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Cho đường tròn (O) và dây AB. Điểm M nằm ngoài đường tròn (O) thỏa mãn điểm B nằm trong góc MAO và \(\widehat{MAB}=\dfrac{1}{2}\widehat{AOB}\). Chứng minh đường thẳng MA là tiếp tuyến của đường tròn (O).

datcoder
30 tháng 9 2024 lúc 23:16

Ta có: \(OA = OB = R\) nên tam giác \(OAB\) cân tại \(O\) suy ra \(\widehat {OAB} = \widehat {OBA}\).

Xét tam giác \(OAB\) cân tại \(O\) có:

\(\begin{array}{l}\widehat {OAB} + \widehat {OBA} + \widehat {AOB} = 180^\circ  \Rightarrow \widehat {OAB} + \widehat {OAB} + \widehat {AOB} = 180^\circ \\ \Rightarrow 2\widehat {OAB} = 180^\circ  - \widehat {AOB} \Rightarrow \widehat {OAB} = 90^\circ  - \frac{1}{2}\widehat {AOB}.\end{array}\)

Ta có: \(\widehat {OAM} = \widehat {OAB} + \widehat {BAM} = 90^\circ  - \frac{1}{2}\widehat {AOB} + \frac{1}{2}\widehat {AOB} = 90^\circ .\)

Suy ra \(OA \bot AM\). Vậy \(MA\) là tiếp tuyến của đường tròn \(\left( O \right)\).