Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sadie Dominic
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 2 2022 lúc 16:11

\(A=\dfrac{\dfrac{3sina}{sina}-\dfrac{cosa}{sina}}{\dfrac{2sina}{sina}+\dfrac{cosa}{sina}}=\dfrac{3-cota}{2+cota}=\dfrac{3-3}{2+3}=0\)

\(B=\dfrac{\dfrac{sin^2a}{sin^2a}-\dfrac{3sina.cosa}{sin^2a}+\dfrac{2}{sin^2a}}{\dfrac{2sin^2a}{sin^2a}+\dfrac{sina.cosa}{sin^2a}+\dfrac{cos^2a}{sin^2a}}=\dfrac{1-3cota+2\left(1+cot^2a\right)}{2+cota+cot^2a}=\dfrac{1-3.3+2\left(1+3^2\right)}{2+3+3^2}=...\)

Ami Mizuno
8 tháng 2 2022 lúc 16:14

a. \(A=\dfrac{3sin\alpha-cos\alpha}{2sin\alpha+cos\alpha}=\dfrac{3\dfrac{sin\alpha}{cos\alpha}-1}{2\dfrac{sin\alpha}{cos\alpha}+1}=\dfrac{3.\dfrac{1}{3}-1}{2.\dfrac{1}{3}+1}=0\)

b.\(B=\dfrac{sin^2\alpha-3sin\alpha.cos\alpha+2}{2sin^2\alpha+sin\alpha.cos\alpha+cos^2\alpha}\)\(=\dfrac{1-\dfrac{3cos\alpha}{sin\alpha}+\dfrac{2}{sin^2\alpha}}{2+\dfrac{cos\alpha}{sin\alpha}+\dfrac{cos^2\alpha}{sin^2\alpha}}=\dfrac{1-3.3+\dfrac{2}{sin^2\alpha}}{2+3+3^2}\)

Mà \(\dfrac{cos\alpha}{sin\alpha}=3,cos^2\alpha+sin^2\alpha=1\Rightarrow sin^2\alpha=\dfrac{1}{10}\)

\(B=\dfrac{1-3.3+\dfrac{2}{\dfrac{1}{10}}}{2+3+3^2}=\dfrac{6}{7}\)

Sadie Dominic
8 tháng 2 2022 lúc 16:26

Dạ em cảm ơn thầy và mọi người ạ! 

BRVR UHCAKIP
Xem chi tiết
Sơn Mai Thanh Hoàng
26 tháng 3 2022 lúc 14:48

\(\dfrac{3sin\alpha-4cos\alpha}{2sin\alpha+3cos\alpha}=\dfrac{\dfrac{3sin\alpha}{cos\alpha}-\dfrac{4cos\alpha}{cos\alpha}}{\dfrac{2sin\alpha}{cos\alpha}+\dfrac{3cos\alpha}{cos\alpha}}=\dfrac{3tan\alpha-4}{2tan\alpha+3}\)

Biết tanα=\(-\dfrac{1}{4}\) nên ta có:

\(\dfrac{3\cdot\dfrac{-1}{4}-4}{2\cdot\dfrac{-1}{4}+3}=\dfrac{-\dfrac{3}{4}-4}{-\dfrac{1}{2}+3}=\dfrac{-19}{10}\)

bbbbbb
Xem chi tiết
Akai Haruma
20 tháng 7 2020 lúc 10:08

Những biểu thức này đều không tính toán ra được giá trị cụ thể nên không phù hợp với yêu cầu "tính". Mình nghĩ bạn nên xem xét lại yêu cầu đề.

Akai Haruma
20 tháng 7 2020 lúc 10:39

Lời giải:

Biểu thức $A$ dạng như vậy là gọn rồi bạn ạ. Biến đổi thêm cũng không có ý nghĩa.

----------

\(B=\sin ^2a+\sin 2a-3\cos ^3a\)

----------

\(C=\frac{\sin ^2a-\sin a\cos a-\cos ^2a}{2\sin a\cos a}=\frac{\sin a}{2\cos a}-\frac{1}{2}-\frac{\cos a}{2\sin a}\)

\(=\frac{\tan a-1-\cot a}{2}\)

bbbbbb
Xem chi tiết
Nguyễn Ngọc Lộc
24 tháng 7 2020 lúc 8:40

hỏi tí chớ \(TanB=2\) hay \(Tan\alpha=2\) vậy lolang.

NĐB Football Game
Xem chi tiết
Nguyễn Huyền Trâm
Xem chi tiết
Akai Haruma
14 tháng 8 2019 lúc 10:41

Lời giải:
\(\frac{1+\cos a}{1-\cos a}-\frac{1-\cos a}{1+\cos a}=\frac{(1+\cos a)^2-(1-\cos a)^2}{(1-\cos a)(1+\cos a)}=\frac{1+2\cos a+\cos ^2a-(1-2\cos a+\cos ^2a)}{1-\cos ^2a}\)

\(=\frac{4\cos a}{\sin ^2a}=\frac{\frac{4\cos a}{\sin a}}{\sin a}=\frac{4\cot a}{\sin a}\) (đpcm)

Phan Nguyễn Hoàng Vinh
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 5 2019 lúc 14:39

\(\frac{2sina+3cosa}{4sina-5cosa}=\frac{\frac{2sina}{cosa}+\frac{3cosa}{cosa}}{\frac{4sina}{cosa}-\frac{5cosa}{cosa}}=\frac{2tana+3}{4tana-5}=\frac{6+3}{12-5}=\frac{9}{7}\)

\(\frac{3sina-2cosa}{5sina+4cos^3a}=\frac{\frac{3sina}{cosa}-\frac{2cosa}{cosa}}{\frac{5sina}{cosa}+\frac{4cos^3a}{cosa}}=\frac{3tana-2}{5tana+4cos^2a}=\frac{3tana-2}{5tana+\frac{4}{1+tan^2a}}=\frac{9-2}{15+\frac{4}{10}}=\frac{5}{11}\)

Nguyễn Huyền Trâm
Xem chi tiết
Kinder
Xem chi tiết
Hồng Phúc
30 tháng 7 2021 lúc 22:34

\(\dfrac{sin2\alpha+sin5\alpha-sin3\alpha}{1+cos\alpha-2sin^22\alpha}\)

\(=\dfrac{2cos\dfrac{5\alpha}{2}.sin\left(-\dfrac{\alpha}{2}\right)+2sin\dfrac{5\alpha}{2}.cos\dfrac{5\alpha}{2}}{cos4\alpha+cos\alpha}\)

\(=\dfrac{2cos\dfrac{5\alpha}{2}.\left(sin\dfrac{5\alpha}{2}-sin\dfrac{\alpha}{2}\right)}{2cos\dfrac{5\alpha}{2}.cos\dfrac{3\alpha}{2}}\)

\(=\dfrac{4cos\dfrac{5\alpha}{2}.cos\dfrac{3\alpha}{2}.sin\alpha}{2cos\dfrac{5\alpha}{2}.cos\dfrac{3\alpha}{2}}\)

\(=2sin\alpha\)

 

heooo
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 6 2023 lúc 22:28

a: \(VT=\dfrac{\left(sina+cosa\right)^3-3\cdot sina\cdot cosa\left(sina+cosa\right)}{sina+cosa}\)

=(sina+cosa)^2-3*sina*cosa

=sin^2a+cos^2a-sina*cosa

=1-sina*cosa=VP

c: VT=(sin^2a+cos^2a)^2-2*sin^2a*cos^2a-(sin^2a+cos^2a)^3+3*sin^2a*cos^2a*(sin^2a+cos^2a)

=1-2sin^2a*cos^2a-1+3*sin^2a*cos^2a

=sin^2a*cos^2a=VP