Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Songoku Sky Fc11
Xem chi tiết
Songoku Sky Fc11
11 tháng 7 2017 lúc 7:20

Giải hệ phương trình,(x + 2)(x - y + 1) = 2 và 3x^2 - 3xy + x + 2y = 4,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

AI XEM RỒI NHỚ CHẤM ĐIỂM

Nguyễn Huệ Lam
11 tháng 7 2017 lúc 7:21

Trình bày xấu chưa từng thấy

Songoku
Xem chi tiết
Nguyễn Xuân Hà Chi
Xem chi tiết
Phạm Khánh Ly
Xem chi tiết
Minh Hiếu
16 tháng 1 2022 lúc 17:25

\(\left\{{}\begin{matrix}2x-2y=-4\\x+2y=-1\end{matrix}\right.\)

⇒ \(3x=-5\)

⇒ \(x=-\dfrac{5}{3}\)

ILoveMath
16 tháng 1 2022 lúc 17:27

\(a,\left\{{}\begin{matrix}2x-2y=-4\\x+2y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-2y+x+2y=\left(-4\right)+\left(-1\right)\\x+2y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=-5\\x+2y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\-\dfrac{5}{3}+2y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\2y=\dfrac{2}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

\(b,\left\{{}\begin{matrix}3x+5y=11\\2x+5y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=11\\3x+5y-2x-5y=11-9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3.2+5y=11\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6+5y=11\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5y=5\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)

Mai Tiến Đỗ
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 2021 lúc 23:39

\(y\left(x+1\right)^2=-x^2+2018x-1\)

\(\Leftrightarrow y=\dfrac{-x^2+2018x-1}{\left(x+1\right)^2}=-1+\dfrac{2020x}{\left(x+1\right)^2}\)

\(\Rightarrow\dfrac{2020x}{\left(x+1\right)^2}\in Z\)

Mà x và \(x\left(x+2x\right)+1\) nguyên tố cùng nhau

\(\Rightarrow2020⋮\left(x+1\right)^2\)

Ta có 2020 chia hết cho đúng 2 số chính phương là 1 và 4

\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=1\\\left(x+1\right)^2=4\end{matrix}\right.\) \(\Rightarrow x=\left\{0;1\right\}\) \(\Rightarrow y\)

 

Nguyễn Việt Lâm
13 tháng 1 2021 lúc 23:43

b.

Từ pt đầu:

\(x^2+xy-2y^2+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y-2\end{matrix}\right.\)

Thế xuống dưới ...

Cung Đường Vàng Nắng
Xem chi tiết
Nguyễn Thị Anh
17 tháng 6 2016 lúc 13:43

viết đề khó hiểu quá

Dang Tung
Xem chi tiết
Yen Nhi
8 tháng 2 2023 lúc 22:27

Gõ đề có sai không ạ?

\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^4\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2x^6-x^4+y^4\\-\sqrt{1+\left(x-y\right)^2}=1-x^6+x^4-2x^3y^2\end{matrix}\right.\)

Cộng theo vế HPT2

\(\sqrt{4-\left(1-x^2y\right)^2}-\sqrt{1+\left(x-y\right)^2}=\left(x^3-y^2\right)^2+1\)

\(\Leftrightarrow\sqrt{4-\left(1-x^2y\right)^2}=\sqrt{1+\left(x-y\right)^2}+\left(x^3-y^2\right)^2+1\) (1)

Có:

\(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}\le2\\\sqrt{1+\left(x-y\right)^2}+\left(x^2-y^2\right)^2+1\ge2\end{matrix}\right.\)

\(\Rightarrow\) (1) xảy ra \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2\\\sqrt{1+\left(x-y\right)^2}=1\\\left(x^3-y^2\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=1\)

 

 

Bao Cao Su
Xem chi tiết
Bui Huyen
27 tháng 7 2019 lúc 9:28

\(hpt\Leftrightarrow\hept{\begin{cases}\frac{20}{x+2y}-\frac{5}{x-2y}=5\\\frac{20}{x+2y}+\frac{3}{x-2y}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{8}{x-2y}=-4\\\frac{20}{x+2y}+\frac{3}{x-2y}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x-2y}=-\frac{1}{2}\\\frac{1}{x+2y}=\frac{1}{8}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-2y=-2\\x+2y=8\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{5}{2}\end{cases}}\)

duy
20 tháng 1 2020 lúc 19:41

câu hỏi hay nhưng ko hay bằng mình

             Dân ta phải biết sử ta 

        Cái gì hổng biết lên tra google

                 Chúc học tốt

Khách vãng lai đã xóa
Park Jimin
20 tháng 1 2020 lúc 20:20

TÊN HAY HƠN CÂU HỎI

Khách vãng lai đã xóa
Minh Anh
Xem chi tiết
Nguyễn Thị Linh
19 tháng 10 2016 lúc 19:40

Hãy ôn lại phần:Pương chình dạng tích - Toán lớp 8 - sách giáo khoa

HT.Phong (9A5)
Xem chi tiết
Nguyễn Đức Trí
15 tháng 9 2023 lúc 11:52

1) \(-2x^2+x+1-2\sqrt[]{x^2+x+1}=0\)

\(\Leftrightarrow2\sqrt[]{x^2+x+1}=-2x^2+x+1\left(1\right)\)

Ta có :

\(2\sqrt[]{x^2+x+1}=2\sqrt[]{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge\sqrt[]{3}\)

Dấu "=" xảy ra khi và chỉ khi \(x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)

\(\left(1\right)\Leftrightarrow-2x^2+x+1=\sqrt[]{3}\)

\(\Leftrightarrow2x^2-x+\sqrt[]{3}-1=0\)

\(\Delta=1-8\left(\sqrt[]{3}-1\right)=9-8\sqrt[]{3}\)

\(pt\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\\x=\dfrac{1-\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\end{matrix}\right.\) \(\left(vì.x=-\dfrac{1}{2}\right)\)

Vậy phương trình cho vô nghiệm