AI K MÌNH MÌNH K LẠI
a, giải phương trình : 4x²+√2x+3=8x+1
B, giải hệ phương trình :
{√x+y+1+(x+2y)=4(x+y) ²+√3*√x+y
X-4y-3=(2y)²-√2-x²
Giải hệ phương trình:
x3(9 - x3)= y3 và x4+ y2= x2(2y+ 1)
giải hệ phương trình
\(\left\{{}\begin{matrix}2x-2y=-4\\x+2y=-1\end{matrix}\right.\)
⇒ \(3x=-5\)
⇒ \(x=-\dfrac{5}{3}\)
\(a,\left\{{}\begin{matrix}2x-2y=-4\\x+2y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-2y+x+2y=\left(-4\right)+\left(-1\right)\\x+2y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=-5\\x+2y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\-\dfrac{5}{3}+2y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\2y=\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}3x+5y=11\\2x+5y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=11\\3x+5y-2x-5y=11-9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3.2+5y=11\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6+5y=11\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5y=5\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)
a) tìm số tự nhiên x và số nguyên y thỏa mãn: \(x^2y+2xy+x^2-2018x+y=-1\)
b) giải hệ phương trình \(\left\{{}\begin{matrix}x^2-2y^2+xy=2y-2x\\\sqrt{x+2y+1}+\sqrt{x^2+y+2}=4\end{matrix}\right.\)
\(y\left(x+1\right)^2=-x^2+2018x-1\)
\(\Leftrightarrow y=\dfrac{-x^2+2018x-1}{\left(x+1\right)^2}=-1+\dfrac{2020x}{\left(x+1\right)^2}\)
\(\Rightarrow\dfrac{2020x}{\left(x+1\right)^2}\in Z\)
Mà x và \(x\left(x+2x\right)+1\) nguyên tố cùng nhau
\(\Rightarrow2020⋮\left(x+1\right)^2\)
Ta có 2020 chia hết cho đúng 2 số chính phương là 1 và 4
\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=1\\\left(x+1\right)^2=4\end{matrix}\right.\) \(\Rightarrow x=\left\{0;1\right\}\) \(\Rightarrow y\)
b.
Từ pt đầu:
\(x^2+xy-2y^2+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y-2\end{matrix}\right.\)
Thế xuống dưới ...
Mọi người giải giúp em hệ phương trình này với ạ!
{(x+3y+1) căn (2xy+2y)=y (3x+4y+3)(1)
( căn (x+3)- căn (2y-2)(x-3+ căn (x^2+x+2y^2-y)=4
Giải hệ phương trình :
\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^2\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)
Gõ đề có sai không ạ?
\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^4\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2x^6-x^4+y^4\\-\sqrt{1+\left(x-y\right)^2}=1-x^6+x^4-2x^3y^2\end{matrix}\right.\)
Cộng theo vế HPT2
\(\sqrt{4-\left(1-x^2y\right)^2}-\sqrt{1+\left(x-y\right)^2}=\left(x^3-y^2\right)^2+1\)
\(\Leftrightarrow\sqrt{4-\left(1-x^2y\right)^2}=\sqrt{1+\left(x-y\right)^2}+\left(x^3-y^2\right)^2+1\) (1)
Có:
\(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}\le2\\\sqrt{1+\left(x-y\right)^2}+\left(x^2-y^2\right)^2+1\ge2\end{matrix}\right.\)
\(\Rightarrow\) (1) xảy ra \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2\\\sqrt{1+\left(x-y\right)^2}=1\\\left(x^3-y^2\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=1\)
giải hệ phương trình
\(\hept{\begin{cases}\frac{4}{x+2y}-\frac{1}{x-2y}=1\\\frac{20}{x+2y}+\frac{3}{x-2y}=1\end{cases}}\)
\(hpt\Leftrightarrow\hept{\begin{cases}\frac{20}{x+2y}-\frac{5}{x-2y}=5\\\frac{20}{x+2y}+\frac{3}{x-2y}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{8}{x-2y}=-4\\\frac{20}{x+2y}+\frac{3}{x-2y}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x-2y}=-\frac{1}{2}\\\frac{1}{x+2y}=\frac{1}{8}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2y=-2\\x+2y=8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{5}{2}\end{cases}}\)
câu hỏi hay nhưng ko hay bằng mình
Dân ta phải biết sử ta
Cái gì hổng biết lên tra google
Chúc học tốt
Giải hệ phương trình: \(\hept{\begin{cases}x^3-\left(2y^4+2y^3-3x^2y\right)\sqrt{2y-1}=0\\\sqrt[3]{5-x}-2y^3=2y^2+\sqrt{5x-4}-4x-3\end{cases}}\)
Hãy ôn lại phần:Pương chình dạng tích - Toán lớp 8 - sách giáo khoa
Giải phương trình và hệ phương trình:
1) \(-2x^2+x+1-2\sqrt{x^2+x+1}=0\)
2) \(\left\{{}\begin{matrix}x^4+y^3x+x^2y^2=3y^4\\2x^2+y^4+1=2x\left(y^2+1\right)\end{matrix}\right.\)
1) \(-2x^2+x+1-2\sqrt[]{x^2+x+1}=0\)
\(\Leftrightarrow2\sqrt[]{x^2+x+1}=-2x^2+x+1\left(1\right)\)
Ta có :
\(2\sqrt[]{x^2+x+1}=2\sqrt[]{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge\sqrt[]{3}\)
Dấu "=" xảy ra khi và chỉ khi \(x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow-2x^2+x+1=\sqrt[]{3}\)
\(\Leftrightarrow2x^2-x+\sqrt[]{3}-1=0\)
\(\Delta=1-8\left(\sqrt[]{3}-1\right)=9-8\sqrt[]{3}\)
\(pt\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\\x=\dfrac{1-\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\end{matrix}\right.\) \(\left(vì.x=-\dfrac{1}{2}\right)\)
Vậy phương trình cho vô nghiệm