\(\left\{{}\begin{matrix}2x-2y=-4\\x+2y=-1\end{matrix}\right.\)
⇒ \(3x=-5\)
⇒ \(x=-\dfrac{5}{3}\)
\(a,\left\{{}\begin{matrix}2x-2y=-4\\x+2y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-2y+x+2y=\left(-4\right)+\left(-1\right)\\x+2y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=-5\\x+2y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\-\dfrac{5}{3}+2y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\2y=\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}3x+5y=11\\2x+5y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=11\\3x+5y-2x-5y=11-9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3.2+5y=11\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6+5y=11\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5y=5\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)