tim GTNN ho mk vs
A = 4x2 - y2 - 12x + 10y + 20152016
tim GTNN ho mk vs
A = 4x2 - y2 - 12x + 10y + 20152016
co the tim dc hai so nguyen x,ysao cho 45x+10y=-20152016 khong?
4x2 – y2 + 10y – 25
\(=4x^2-\left(y-5\right)^2=\left(2x-y+5\right)\left(2x+y-5\right)\)
\(=\left(2x-y+5\right)\left(2x+y-5\right)\)
a)3xy3-6xy2+9x2y2
b) 4x2-y2+10y-25
c) x3-2x2+x-4xy2
\(a,3xy^3-6xy^2+9x^2y^2=3xy^2\left(y-2+3x\right)\\ b,4x^2-y^2+10y-25=4x^2-\left(y^2-10y+25\right)=\left(2x\right)^2-\left(y-5\right)^2=\left(2x-y+5\right)\left(2x+y-5\right)\\ c,x^3-2x^2+x-4xy^2=x\left(x^2-2x+1-4y^2\right)=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=x\left(x-1-2y\right)\left(x-1+2y\right)\)
b: \(=\left(2x-y+5\right)\cdot\left(2x+y-5\right)\)
tìm gtnn (gtln) của
a) 4x2+12x+1 b) 4x2-3x+10
c)2x2+5x+10 d) x-x2+2
e) 2x-2x2 f) 4x2+2y2+4xy+4y+5
a) \(4x^2+12x+1=\left(4x^2+12x+9\right)-8=\left(2x+3\right)^2-8\ge-8\)
\(ĐTXR\Leftrightarrow x=-\dfrac{3}{2}\)
b) \(4x^2-3x+10=\left(4x^2-3x+\dfrac{9}{16}\right)+\dfrac{151}{16}=\left(2x-\dfrac{3}{4}\right)^2+\dfrac{151}{16}\ge\dfrac{151}{16}\)
\(ĐTXR\Leftrightarrow x=\dfrac{3}{8}\)
c) \(2x^2+5x+10=\left(2x^2+5x+\dfrac{25}{8}\right)+\dfrac{55}{8}=\left(\sqrt{2}x+\dfrac{5\sqrt{2}}{4}\right)^2+\dfrac{55}{8}\ge\dfrac{55}{8}\)
\(ĐTXR\Leftrightarrow x=-\dfrac{5}{4}\)
d) \(x-x^2+2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{9}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{2}\)
e) \(2x-2x^2=-2\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{2}=-2\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\le\dfrac{1}{2}\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{2}\)
f) \(4x^2+2y^2+4xy+4y+5=\left(4x^2+4xy+y^2\right)+\left(y^2+4y+4\right)+1=\left(2x+y\right)^2+\left(y+2\right)^2+1\ge1\)
\(ĐTXR\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
a: Ta có: \(4x^2+12x+1\)
\(=4x^2+12x+9-8\)
\(=\left(2x+3\right)^2-8\ge-8\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)
b: Ta có: \(4x^2-3x+10\)
\(=4\left(x^2-\dfrac{3}{4}x+\dfrac{5}{2}\right)\)
\(=4\left(x^2-2\cdot x\cdot\dfrac{3}{8}+\dfrac{9}{64}+\dfrac{151}{64}\right)\)
\(=4\left(x-\dfrac{3}{8}\right)^2+\dfrac{151}{16}\ge\dfrac{151}{16}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{8}\)
c: Ta có: \(2x^2+5x+10\)
\(=2\left(x^2+\dfrac{5}{2}x+5\right)\)
\(=2\left(x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{55}{16}\right)\)
\(=2\left(x+\dfrac{5}{4}\right)^2+\dfrac{55}{8}\ge\dfrac{55}{8}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{5}{4}\)
Viết biểu thức sau dưới dạng tổng của hai bình phương:
a. x2-2x+2+4y2+4y
b. 4x2+y2+12x+4y+13
c. x2+17+4y2+8x+4y
d. 4x2-12x+y2-4y+13
`a)x^2-2x+2+4y^2+4y`
`=x^2-2x+1+4y^2+4y+1`
`=(x-1)^2+(2y+1)^2`
`b)4x^2+y^2+12x+4y+13`
`=4x^2+12x+9+y^2+4y+4`
`=(2x+3)^2+(y+2)^2`
`c)x^2+17+4y^2+8x+4y`
`=x^2+8x+16+4y^2+4y+1`
`=(x+4)^2+(2y+1)^2`
`d)4x^2-12xy+y^2-4y+13`
`=4x^2-12x+9+y^2-4y+4`
`=(2x-3)^2+(y-2)^2`
a) \(x^2-2x+2+4y^2+4y=\left(x-1\right)^2+\left(2y+1\right)^2\)
b) \(4x^2+y^2+12x+4y+13=\left(2x+3\right)^2+\left(y+2\right)^2\)
c) \(x^2+17+4y^2+8x+4y=\left(x+4\right)^2+\left(2y+1\right)^2\)
d) \(4x^2-12x+y^2-4y+13=\left(2x-3\right)^2+\left(y-2\right)^2\)
a: \(x^2-2x+2+4y^2+4y\)
\(=x^2-2x+1+4y^2+4y+1\)
\(=\left(x-1\right)^2+\left(2y+1\right)^2\)
b: \(4x^2+12x+y^2+4y+13\)
\(=4x^2+12x+9+y^2+4y+4\)
\(=\left(2x+3\right)^2+\left(y+2\right)^2\)
c: \(x^2+8x+4y^2+4y+17\)
\(=x^2+8x+16+4y^2+4y+1\)
\(=\left(x+4\right)^2+\left(2y+1\right)^2\)
d: \(4x^2-12x+y^2-4y+13\)
\(=4x^2-12x+9+y^2-4y+4\)
\(=\left(2x-3\right)^2+\left(y-2\right)^2\)
Tìm GTNN của A=\(x^4-6x^3+12x^2-12x+2021\)
Giúp mk vs ạ mk đang cần gấp ai nhanh mk sẽ vote cho ạ :<
\(Sửa:A=x^4-6x^3+13x^2-12x+2021\\ A=\left(x^4-6x^3+9x^2\right)+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x\right)^2+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x+2\right)^2+2017\ge2017\\ A_{min}=2017\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Tìm GTNN :
C = 4x2 + 10y2 - 4x + 10y - 2
Giúp mk vs ạ, mk cần gấp!!!
\(C=4x^2+10y-4x+10y-2\)
\(=\left(4x^2-4x+1\right)+\left(10y^2+10y+\frac{5}{2}\right)-\frac{11}{2}\)
\(=\left(2x-1\right)^2+\left(\sqrt{10y}+\sqrt{\frac{5}{2}}\right)^2-\frac{11}{2}\ge\frac{-11}{2}\)
Vậy \(C_{min}=-\frac{11}{2}\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
và \(\sqrt{10}y+\sqrt{\frac{5}{2}}=0\Leftrightarrow y\frac{-\sqrt{5}}{\sqrt{20}}=-0,5\)
mk cần gấp mn giúp mk vs ạ
bình phương của 1 tổng , 1 hiệu
A) 49y2 - 42.x.y + 10x2 - 6x+9
B) 64x2 -48x - y2-20y - 91
C) x4+ 2x2 - y2-2y
D) x2 - 6x - y2-10y-16
A) \(...=\left(7y-3\right)^3\)
B) \(...=\left(4y-3\right)^3\)
C) \(...=x^4+2x^2+1-\left(y^2+2y+1\right)\)
\(=\left(x^2+1\right)^2-\left(y+1\right)^2\)
D) \(...=x^2-6x+9-\left(y^2-10y+25\right)\)
\(=\left(x-3\right)^2-\left(y-5\right)^2\)
cậu có thể giải chi tiết giúp tớ dc ko
Áp dụng \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
\(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
\(\left(a+b\right)^2=a^2+2ab+b^2;\left(a-b\right)^2=a^2-2ab+b^2\)