tìm x,y để:
a)7x8y chia hết cho 3và 5
b)6y5x chia hết cho 9 và 5
1. Tìm x,y để 16xy chia hết cho 5 , 2 và 9
2. Tìm x,y để 7x8y chia hết cho 5 và 9
3. Tìm x,y để 7x3y chia hết cho 9 và y - x = 4
Câu 1 tương tự câu 2 nhá
1.
để 16xy chia hết cho 2 thì y phải là số chẵn :0;2;4;6;8
để 16xy chia hết ch5 thì y phải là 0 hoặc 5
=> y = 0
ta có số : 16x0
Để 16x0 chia hết cho 9 thì 1+6+0+x phải chia hết 9
hay 7 +x phải chia hết 9
Mà x là chữ số
=> x = 2
Từ chữ số x,y để 8x7y chia hết cho
a)5 và 9
b) 2x6y chia hết cho cả 2,3 và 5
c) 7x8y khi chia cho 5 cũng như chia cho 9 đều dư 1
d)6x2y chia 9 và a - b bằng 1
Bài 4: Tìm các chữ số a và b để:
a) A = 6a14b chia hết cho cả 2, 3, 5, 9.
b) B = 25a1b chia hết cho 15 nhưng không chia hết cho 2.
a) Để số A chia hết cho 2,5 thì b = 0
Tổng các chữ số của số A là :
6 +1 + 4 = 11
Vậy a = 7 để A chia hết cho 2,3,5,9
Thử lại : 67140 chia hết cho 2,5
6 + 7 + 1 + 4 = 18
Mà 18 chia hết cho 3,9 nên số A bằng 67140 là đúng
Giải thích các bước giải:
A= 6a14b
Để A chia hết cho cả 2 và 5 ⇒ D tận cùng là 0
⇒ A= 6a140
Để A chia hết cho cả 3 và 9
⇒ Tổng các chữ số của A chia hết cho 9
hay 6+a+1 + 4 +0 =11 + a chia hết cho 9
=> a = 7
Vậy A = 67140
Để B = 25a1b chia hết cho 15
⇒ B chia hết cho 5 và cho 3
Vì B chia hết cho 5 nhưng k chia hếo 2 nênB tận cùng bằng chữ số 5
Hay B = 25a15
Để B chia hết cho 3 thì 2 + 5 + a + 1 + 5 = 13+a chia hết cho 3
⇒ a ∈ {2;5;8}
Vậy B có thể là 25215; 25515; 25815
a) Để số A chia hết cho 2,5 thì b = 0
Tổng các chữ số của số A là :
6 +1 + 4 = 11
Vậy a = 7 để A chia hết cho 2,3,5,9
Thử lại : 67140 chia hết cho 2,5
6 + 7 + 1 + 4 = 18
Chọn ngẫu nhiên một số trong bốn số 11;12;13 và 14. Tìm xác suất để:
a) Chọn được số chia hết cho 5
b) Chọn được số có hai chữ số
c) Chọn được số nguyên tố
d) Chọn được số chia hết cho 6
a) Biến cố “ Chọn được số chia hết cho 5” là biến cố không thể ( do trong các số đã cho không có số nào chia hết cho 5) nên xác suất chọn được số chia hết cho 5 là 0.
b) Biến cố: “ Chọn được số có hai chữ số” là biến cố chắc chắn ( do tất cả các số đã cho đều là số có 2 chữ số) nên xác suất chọn được số có hai chữ số là 1.
c) Xét 2 biến cố: “ Chọn được số nguyên tố” và “ Chọn được hợp số”
2 biến cố này là 2 biến cố đồng khả năng (đều có 2 khả năng) và luôn xảy ra 1 trong 2 biến cố đó
Xác suất của mỗi biến cố đó là \(\dfrac{1}{2}\)
Vậy xác suất để chọn được số nguyên tố là \(\dfrac{1}{2}\)
d) Trong 4 số trên chỉ có số 12 là số chia hết cho 6.
Xét 4 biến cố: “Chọn được số 11”; “Chọn được số 12”; “Chọn được số 13”; “Chọn được số 14”
4 biến cố này là 4 biến cố đồng khả năng (đều có 2 khả năng) và luôn xảy ra 1 trong 4 biến cố đó
Xác suất của mỗi biến cố đó là \(\dfrac{1}{4}\)
Vậy xác suất để chọn được chọn được số 12 hay chọn được số chia hết cho 12 là \(\dfrac{1}{4}\)
1:tìm a,b để:a)(52+15a)chia hết cho 5,(52+15a)chia 5 dư 1,ab:9 và :5 dư 2
Bài 4: Chứng minh rằng:
a) \(4^{10}+4^7\) chia hết cho 65
b) \(10^{10}-10^9-10^8\) chia hết cho 89
Bài 5. Tìm số tự nhiên n để:
a) 5n+4 chia hết cho n
b) n+6 chia hết cho n+2
c) 3n+1 chia hết cho n-2
d) 3n+9 chia hết cho 2n-1
Bài 6: chứng minh rằng:
\(\overline{abab}\) chia hết cho 101
\(\overline{abc-\overline{cba}}\) chia hết cho 9 và 11
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
a/ \(\overline{53x8y}⋮2\) => y chẵn
\(\overline{53x8y}\) chia 5 dư 3 \(\Rightarrow y=\left\{3;8\right\}\) do y chẵn => y=8
\(\Rightarrow\overline{53x8y}=\overline{53x88}⋮9\Rightarrow5+3+x+8+8=x+24⋮9\Rightarrow x=3\)
b/ \(\overline{x184y}\) chia 2 có dư => y lẻ
\(\overline{x184y}⋮5\Rightarrow y=\left\{0;5\right\}\) do y lẻ => y=5
\(\Rightarrow\text{}\overline{x184y}=\overline{x1845}⋮9\Rightarrow x+1+8+4+5=x+18⋮9\Rightarrow x=\left\{0;9\right\}\)
số TN nhỏ nhất chia hết cho 9,chia 5 dư 3và chia 2 dư 1
Vì số đó chia 2 dư 1 nên số đó là số lẻ
Vì số đố chia 5 dư 3 nên số đó có tận cùng là 3 hoặc 8
mà nếu số đó có tận cùng là 8 thì chia hết cho 2 mâu thuẫn với điều kiện của đầu bài
=> số tận cùng của số đó là 3
ta thấy số tự nhiên nhỏ nhất chia hết cho 9 có tận cùng là 3 là 53
Vậy...
Số chia 5 dư 3 là số có chữ số hàng đơn vị là 3 hoặc 8
Số chia 2 dư 1 nên số cần tìm là số lẻ
=> số cần tìm là số có chữ số hàng đơn vị là 3
Số tự nhiên nhỏ nhất có chữ số hàng đơn vị là 3 mà chia hết cho 9 là số 63
tớ nhầm cuối bài nhé :) là 63 ko phải 53 (:
Tìm chữ số x, y để A = 56x3y
a) Chia hết cho cả 2; 3; 5; 9.
b) Chia hết cho 3 và 5.
c) Chia hết cho 45.
d) Chia hết cho 5 nhưng chia 9 dư 1
e) Chia cho 2; 5 và 9 đều dư 1.