Chứng tỏ rằng: 32016 + 32017 + 32016 + 32017 -132 chia hết cho 12
Chứng minh rằng S= 3+32 +33 +...+32016 chia hết cho 12, 39
S = 3+3^2 + 3^3 +...+ 3^2016
= (3+3^2+3^3) +...+(3^2014+3^2015+3^2016)
=3(1+3+3^2) +.....+3^2014(1+3+32)
=13 ( 3+...+3^2014 ) chia hết cho 13
S=1+31+32+33+.......+32017+32018
Chứng tỏ rằng S ⋮13
Ta có: \(S=1+3^1+3^2+3^3+...+3^{2017}+3^{2018}\)
\(=\left(1+3^1+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{2016}+3^{2017}+3^{2018}\right)\)
\(=13+3^3\cdot13+...+3^{2016}\cdot13\)
\(=13\cdot\left(1+3^3+...+3^{2016}\right)⋮13\)(đpcm)
bài 5:
1) cho A = 5+32+...+32017+32018. Tìm số tự nhiên n biết 2A-1=3n
2) chứng tỏ rằng với mọi số tự nhiên n thì 3n-3+2n-3+3n+1+2n+2 chia hết cho 6
3) tìm tất cả các cặp số tự nhiên (a,b) để 5a +9999 =20b
18) Cho A =\(\dfrac{7^{2016^{2019}}-3^{2016^{2015}}}{5}\)chứng tỏ A là số chẵn.
mn mn mn giúp giúp mình gấp mình sắp đi học rồiiiii
\(2,\\ 3^{n-3}+2^{n-3}+3^{n+1}+2^{n+2}\\ =3^{n-3}\left(1+3^4\right)+2^{n-3}\left(1+2^5\right)\\ =3^{n-3}\cdot82+2^{n-3}\cdot33\)
Vì \(3^{n-3}\cdot82⋮2;⋮3\) nên \(3^{n-3}\cdot82⋮6\)
\(2^{n-3}\cdot33⋮2;⋮3\) nên \(2^{n-3}\cdot33⋮6\)
Do đó tổng trên chia hết cho 6 với mọi \(n\in N\)
a) Cho A = 1 + 3 + 32 + 33 + ... + 32016 . Tìm số dư khi chia A cho 65 .
Giúp em với ạ
Lời giải:
$A=1+(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2014}+3^{2015}+3^{2016})$
$=1+3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2014}(1+3+3^2)$
$=1+3.13+3^4.13+....+3^{2014}.13$
$=1+13(3+3^4+...+3^{2014})$
$\Rightarrow A-1\vdots 13(1)$
Mặt khác:
$A=1+(3+3^2+3^3+3^4)+....+(3^{2013}+3^{2014}+3^{2015}+3^{2016})$
$=1+3(1+3+3^2+3^3)+....+3^{2013}(1+3+3^2+3^3)$
$=1+(3+...+3^{2013})(1+3+3^2+3^3)$
$=1+40(3+....+3^{2013})$
$\Rightarrow A-1\vdots 5(2)$
Từ $(1); (2)$ mà $(5,13)=1$ nên $A-1\vdots (5.13)$ hay $A-1\vdots 65$
$\Rightarrow A$ chia $65$ dư $1$
Cho x1−12017=x2−22016=x3−32016=...=x2017−20171x1−12017=x2−22016=x3−32016=...=x2017−20171 và x1+x2+...+x2017=2017.2018
Tìm x1,x2,...,x2017?
Cho x1−12017=x2−22016=x3−32016=...=x2017−20171x1−12017=x2−22016=x3−32016=...=x2017−20171 và x1+x2+...+x2017=2017.2018
Tìm x1,x2,...,x2017?
Tìm số tự nhiên x thỏa mãn 5.x−(32021−32019):32017=275.x−(32021−32019):32017=27.
Đáp số: x = .
Tính tổng sau
B = 1 + 31 + 32 + ... + 32016
\(B=1+3^1+3^2+...+3^{2016}\)
\(3B=3+3^2+3^3+3^4+...+3^{2017}\)
\(3B-B=3^{2017}-1\)
\(B=\dfrac{3^{2017}-1}{2}\)
Tính tổng sau
B = 1 + 31 + 32 + ... + 32016
\(B=1+3^1+3^2+...+3^{2016}\)
\(3\cdot B=3+3^2+3^3+...+3^{2016}+3^{2017}\)
\(3B-B=3+3^2+3^3+...+3^{2016}+3^{2017}-\left(1+3^1+3^2+...+3^{2016}\right)\)
\(2B=3^{2017}-1\)
\(\Rightarrow B=\dfrac{3^{2017}-1}{2}\)
Tính tổng sau
B = 1 + 3 + 32 + ... + 32016
\(B=1+3+3^2+...+3^{2016}\)
\(3\cdot B=3+3^2+3^3+...+3^{2017}\)
\(3B-B=3+3^2+3^3+...+3^{2017}-\left(1+3+3^2+...+3^{2016}\right)\)
\(2B=3^{2017}-1\)
\(\Rightarrow B=\dfrac{3^{2017}-1}{2}\)