cho 2 tập hợp A và B biết A hợp B bằng B. Chứng minh A\(\subset\)B
cho A={3k+2|k\(\in\)Z}; B={6m+2|m\(\in\)Z}
a) chứng minh rằng 2\(\in\)A, 7\(\notin\)B. số 18 có thuộc tập hợp A hay không?
b) chứng minh rằng \(B\subset A\).
a) - Để chứng minh rằng 2 ∈ A, ta cần tìm một số nguyên k sao cho 3k + 2 = 2. Thấy ngay k = 0 là thỏa mãn, vì 3*0 + 2 = 2. Vậy 2 ∈ A.- Để chứng minh rằng 7 ∉ B, ta cần chứng minh rằng không tồn tại số nguyên m để 6m + 2 = 7. Giả sử tồn tại m, ta có 6m = 5, nhưng đây là một phương trình vô lý vì 6 không chia hết cho 5. Vậy 7 ∉ B.- Để kiểm tra xem số 18 có thuộc tập hợp A hay không, ta cần tìm một số nguyên k sao cho 3k + 2 = 18. Giải phương trình này, ta có 3k = 16, vì 3 không chia hết cho 16 nên không tồn tại số nguyên k thỏa mãn. Vậy số 18 không thuộc
cho hai tập hợp:
A={x\(\in\)R|\(x^2\)+x-6=0 hoặc 3\(x^2\)-10x+8=0};
B={x\(\in\)R|\(x^2\)-2x-2=0 và 2\(x^2\)-7x+6=0}.
a) viết tập hợp A,B bằng cách liệt kê các phần tử của nó.
b) tìm tất cả các tập hợp sao cho \(B\subset X\) và \(X\subset A\).
a: A={x\(\in R\)|x^2+x-6=0 hoặc 3x^2-10x+8=0}
=>x^2+x-6=0 hoặc 3x^2-10x+8=0
=>(x+3)(x-2)=0 hoặc (x-2)(3x-4)=0
=>\(x\in\left\{-3;2;\dfrac{4}{3}\right\}\)
=>A={-3;2;4/3}
B={x\(\in\)R|x^2-2x-2=0 hoặc 2x^2-7x+6=0}
=>x^2-2x-2=0 hoặc 2x^2-7x+6=0
=>\(x\in\left\{1+\sqrt{3};1-\sqrt{3};2;\dfrac{3}{2}\right\}\)
=>\(B=\left\{1+\sqrt{3};1-\sqrt{3};2;\dfrac{3}{2}\right\}\)
A={-3;2;4/3}
b: \(B\subset X;X\subset A\)
=>\(B\subset A\)(vô lý)
Vậy: KHông có tập hợp X thỏa mãn đề bài
cho 2 tập hợp :
A = { m ,n } và B = { m , n , p , q }
a) dùng kí hiệu \(\subset\)để thể hiện mõi quan hệ giữa 2 tập hợp A và B.
b) dùng hình vẽ minh họa tập hợp A và B
1. Tính số phần tử của các tập hợp
B = { 10 ; 12 ; 14 ; ....... ; 98 }
C = { 35 ; 37 ; 39 ; ....... ; 105 }
2. Cho hai tập hợp : A = { a , b , c , d } , B = { a , b }
a) Dùng kí hiệu \(\subset\) để thể hiện quan hệ giữa hai tập hợp A và B
b) Dùng hình vẽ minh họa hai tập hợp A và B.
1) Số phần tử của tập hợp B là:
(98 - 10) : 2 + 1 = 45 (phần tử)
Số phần tử của tập hợp C là:
(105 - 35) : 2 + 1 = 36 (phần tử)
2) a) \(B\subset A\)
b)
mình cũng ra kết quả như bạn soyeon_tiểu bàng giải
Cho hai tập hợp :
\(A=\left\{a,b,c,d\right\};B=\left\{a,b\right\}\)
a) Dùng kí hiệu \(\subset\) để thể hiện quan hệ giữa hai tập hợp A và B
b) Dùng hình vẽ minh họa tập hợp A và B
a) Hãy viết tất cả các tập hợp con của tập hợp \(A = \{ a;b;c\} \)
b) Tìm tất cả các tập hợp B thỏa mãn điều kiện \(\{ a;b\} \subset B \subset \{ a;b;c;d\} \)
a) Các tập hợp con của tập hợp \(A = \{ a;b;c\} \)gồm:
+) Tập rỗng: \(\emptyset \)
+) Tập con có 1 phần tử: \(\{ a\} ,\{ b\} ,\{ c\} .\)
+) Tập con có 2 phần tử: \(\{ a;b\} ,\{ b;c\} ,\{ c;a\} .\)
+) Tập hợp A.
b) Tập hợp B thỏa mãn \(\{ a;b\} \subset B \subset \{ a;b;c;d\} \)là:
+) \(B = \{ a;b\} \)
+) \(B = \{ a;b;c\} \)
+) \(B = \{ a;b;d\} \)
+) \(B = \{ a;b;c;d\} \)
Chú ý
Mọi tập hợp A luôn có hai tập con là \(\emptyset \) và A.
Cho hai tập hợp \(A=\left(0;+\infty\right)\) và \(B=\left\{x\in R|mx^2-4x+m-3=0\right\}\). Tìm m để B có đúng 2 tập hợp con và \(B\subset A\)
\(mx^2-4x+m-3=0\left(1\right)\)
Để tập hợp B có đúng 2 tập con và \(B\subset A\) thì \(\left(1\right)\) có 2 nghiệm phân biệt cùng dương
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\P>0\\S>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4-m\left(m-3\right)>0\\\dfrac{m-3}{m}>0\\\dfrac{4}{m}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m-4< 0\\m< 0\cup m>3\\m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 4\\m< 0\cup m>3\\m>0\end{matrix}\right.\)
\(\Leftrightarrow3< m< 4\)
Ta có:
\(\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}\)
+) \(\overrightarrow{BG}=\dfrac{1}{3}\left(\overrightarrow{BM}+\overrightarrow{BN}\right)=\dfrac{1}{3}\left(-\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CN}\right)\)
\(=\dfrac{1}{3}\left(-\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{AC}-\overrightarrow{AB}-\dfrac{1}{2}\overrightarrow{DC}\right)=\dfrac{1}{3}\left(-\dfrac{13}{6}\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(=-\dfrac{13}{18}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
=> \(\overrightarrow{AG}=\dfrac{5}{18}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
Mặt khác:
\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}=\overrightarrow{AB}+k\overrightarrow{BC}=\overrightarrow{AB}+k\left(\overrightarrow{AC}-\overrightarrow{AB}\right)=\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\)
Để A, G, I thẳng hàng
=>\(\dfrac{\dfrac{5}{18}}{1-k}=\dfrac{\dfrac{1}{3}}{k}\Rightarrow k=\dfrac{6}{11}\)
cho 2 tập hợp A={3;4;5} và B={5;6;7;8;9;10}
a,viết tập hợp khác tập hợp rỗng vừa là tập hợp con của A vừa là tập hợp con của B
b,dùng kí hiệu\(\subset\)để thể hiện mối quan hệ của A và B
cho 2 tập hợp a và b bất kì . Chứng minh rằng (A giao B) hợp A bằng A
(A\(\cap\)B)\(\cup\)A=A
(A\(\cap\)B)\(\cup\)A = (A\(\cup\)A)\(\)\(\cap\) (A\(\cup\)B) = A \(\cap\)(A\(\cup\)B) = A