Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bé Ngủ ngon
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 1 2022 lúc 10:23

a: Xét (O) có 

AB là tiếp tuyến

AC là tiếp tuyến
Do đó AB=AC
hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

Bich Nga Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 11 2023 lúc 13:15

a: Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại trung điểm của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔOBA vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(1\right)\)

b: Xét (O) có

ΔBED nội tiếp

BD là đường kính

Do đó: ΔBED vuông tại E

=>BE\(\perp\)ED tại E

=>BE\(\perp\)AD tại E

Xét ΔDBA vuông tại B có BE làđường cao

nên \(AE\cdot AD=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot AO=AE\cdot AD\)

 

Nguyễn Phương Ly
Xem chi tiết
Nhật Trương
Xem chi tiết
Hồng Phúc
18 tháng 12 2020 lúc 20:17

Hình vẽ:

a, \(\left\{{}\begin{matrix}OB=OC\\AB=AC\end{matrix}\right.\Rightarrow OA\) là đường trung trực của \(BC\)

b, Vì \(OA\) là đường trung trực của \(BC\Rightarrow\left\{{}\begin{matrix}OA\perp BC\\HB=HC\end{matrix}\right.\)

\(\Delta OBA\) vuông tại \(B,BH\perp OA\Rightarrow HA.HO=HB^2=HB.HC\)

c, \(\widehat{ABI}=\dfrac{1}{2}\widehat{AOB}\) (Góc tạo bởi tia tiếp tuyến và dây cung)

Lại có \(\widehat{CBI}=\dfrac{1}{2}\widehat{COI}==\dfrac{1}{2}\widehat{BOI}\)

\(\Rightarrow\widehat{ABI}=\widehat{CBI}\Rightarrow BI\) là phân giác \(\widehat{ABC}\)

\(AI\) là phân giác \(\widehat{BAC}\)

\(\Rightarrow I\) là tâm đường tròn nội tiếp

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 9 2019 lúc 6:04

a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC

HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA

b, Ta có  K D C ^ = A O D ^ (cùng phụ với góc  O B C ^ )

=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO

c, Ta có:  M B A ^ = 90 0 - O B M ^ và  M B C ^ = 90 0 - O M B ^

Mà  O M B ^ = O B M ^ (∆OBM cân) =>  M B A ^ = M B C ^

=> MB là phân giác  A B C ^ . Mặt khác AM là phân giác B A C ^

Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC

d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A

=> CA = AB = AP => A là trung điểm CK

Phúc Tiến
Xem chi tiết
Flamigo
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 5 2023 lúc 19:40

1: ΔODE cân tại O

mà ON là trung tuyến

nên ON vuông góc DE

góc OBA=góc ONA=góc OCA=90 độ

=>O,N,B,A,C cùng thuộc đường tròn đường kính OA

2: góc BOC=2*góc AOC=2*góc ANC

3: Xét ΔABD và ΔAEB có

góc ABD=góc AEB

góc BAD chung

=>ΔABD đồng dạng với ΔAEB

=>AB^2=AD*AE=AH*AO

=>AD/AO=AH/AE

=>ΔADH đồng dạng với ΔAOE

=>góc ADH=góc AOE

=>góc HOE+góc HDE=180 độ

=>DHOE nội tiếp

Hồng Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 1 2022 lúc 20:46

a:Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC

b: Xét ΔOBA vuông tại B có BH là đường cao

nên \(BH^2=OH\cdot HA=\left(\dfrac{BC}{2}\right)^2=\dfrac{BC^2}{4}\)

Tuấn Minh Phạm
Xem chi tiết
TÚ TRẦN THIÊN THANH
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 1 2023 lúc 14:06

a: Xét (O) có

ΔCED nội tiếp

CD là đườngkính

=>ΔCED vuông tại E

Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc với BC

b: Xét ΔACD vuông tại C có CE là đường cao

nên AE*AD=AC^2

=>AE*AD=AH*AO

=>AE/AO=AH/AD

=>ΔAEH đồng dạng với ΔAOD

=>góc AHE=góc ADO