Cho A nằm ngoài (O;R) vẽ hai tiếp tuyến AB, AC tới đường tròn (O;R) (B và C là tiếp điểm) và đường thẳng d đi qua A cắt (O)tại D,E (AD<AE). Gọi H là giao điểm của OA và BC, I là trung điểm của dây DE, F là giao điểm của OI với BC.
a) Chứng minh OA là trung trực của đoạn thẳng BC.
b) Chứng minh \(OH.AH=\dfrac{BC^2}{4}\)
c) Khi A di động trên d sao cho thỏa mãn điều kiện bài toán, chứng minh F là điểm cố định.