Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Văn Thị Kim Chi
Xem chi tiết
O Đì
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 4 2023 lúc 17:14

a: \(\dfrac{a}{b}+\dfrac{b}{a}>=2\cdot\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}=2\)

b: a<b

=>-2a>-2b

=>-2a-3>-2b-3

c: =x^2+2xy+y^2+y^2+6y+9

=(x+y)^2+(y+3)^2>=0 với mọi x,y

d: a+3>b+3

=>a>b

=>-5a<-5b

=>-5a+1<-5b+1

X Buồn X
Xem chi tiết
 Mashiro Shiina
24 tháng 5 2018 lúc 11:18

Khởi động nhẹ nhàng thôi:v

\(a^2+b^2+c^2\ge\dfrac{3}{4}\)

\(\Rightarrow a^2+b^2+c^2-a-b-c\ge\dfrac{3}{4}-\dfrac{3}{2}=-\dfrac{3}{4}\)

\(\Rightarrow\left(a^2-a+\dfrac{1}{4}\right)+\left(b^2-b+\dfrac{1}{4}\right)+\left(c^2-c+\dfrac{1}{4}\right)\ge0\)

\(\Rightarrow\left(a-\dfrac{1}{2}\right)^2+\left(b-\dfrac{1}{2}\right)^2+\left(c-\dfrac{1}{2}\right)^2\ge0\) (đúng)

\("="\Leftrightarrow a=b=c=\dfrac{1}{2}\)

Phùng Khánh Linh
24 tháng 5 2018 lúc 10:35

a) C1. Áp dụng BĐT : ( x - y)2 ≥ 0 ∀xy

Ta có : a2 + b2 ≥ 2ab ( 1)

b2 + c2 ≥ 2bc ( 2)

c2 + a2 ≥ 2ac ( 3)

Từ ( 1 ; 2 ; 3) ⇒ 2( a2 + b2 + c2) ≥ 2( ab + ab + ac)

⇔ 3( a2 + b2 + c2) ≥ ( a + b + c)2

⇔ a2 + b2 + c2\(\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{9}{4}.\dfrac{1}{3}=\dfrac{3}{4}\)

Đẳng thức xảy ra khi và chỉ khi : a = b = c = \(\dfrac{1}{2}\)

C2. Áp dụng BĐT Bunhiacopxki , ta có :

( a2 + b2 + c2)( 12 + 12 + 12) ≥ ( a + b + c)2

⇔ a2 + b2 + c2 \(\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{9}{4}.\dfrac{1}{3}=\dfrac{3}{4}\)

Đẳng thức xảy ra khi và chỉ khi : a = b = c = \(\dfrac{1}{2}\)

 Mashiro Shiina
24 tháng 5 2018 lúc 10:52

Lp 8 học Bunyakovsky :v Giỏi.

Cíuuuuuuuuuu
Xem chi tiết
Yeutoanhoc
13 tháng 6 2021 lúc 21:12

`A=16x^2+8x+5`

`=16x^2+8x+1+4`

`=(4x+1)^2+4>=4`

Dấu "=" xảy ra khi `4x+1=0<=>x=-1/4`

`B=x^2-x`

`=x^2-x+1/4-1/4`

`=(x-1/2)^2-1/4>=-1/4`

Dấu "=" xảy ra khi `x=1/2`

`C=a^2-2a+b^2+6b+2021`

`=a^2-2a+1+b^2+6b+9+2011`

`=(a-1)^2+(b+3)^2+2011>=2011`

Dấu "=" xảy ra khi \(\begin{cases}a=1\\b=-3\\\end{cases}\)

Trương Ngọc Anh Tuấn
Xem chi tiết
Kẻ Huỷ Diệt
Xem chi tiết
Hoàng văn tiến
Xem chi tiết
Hoàng văn tiến
Xem chi tiết
Akai Haruma
13 tháng 12 2023 lúc 19:51

A.

$a^2+4b^2+9c^2=2ab+6bc+3ac$

$\Leftrightarrow a^2+4b^2+9c^2-2ab-6bc-3ac=0$

$\Leftrightarrow 2a^2+8b^2+18c^2-4ab-12bc-6ac=0$

$\Leftrightarrow (a^2+4b^2-4ab)+(a^2+9c^2-6ac)+(4b^2+9c^2-12bc)=0$

$\Leftrightarrow (a-2b)^2+(a-3c)^2+(2b-3c)^2=0$

$\Rightarrow a-2b=a-3c=2b-3c=0$

$\Rightarrow A=(0+1)^{2022}+(0-1)^{2023}+(0+1)^{2024}=1+(-1)+1=1$

 

Akai Haruma
13 tháng 12 2023 lúc 19:53

B.

$x^2+2xy+6x+6y+2y^2+8=0$

$\Leftrightarrow (x^2+2xy+y^2)+y^2+6x+6y+8=0$

$\Leftrightarrow (x+y)^2+6(x+y)+9+y^2-1=0$

$\Leftrightarrow (x+y+3)^2=1-y^2\leq 1$ (do $y^2\geq 0$ với mọi $y$)

$\Rightarrow -1\leq x+y+3\leq 1$

$\Rightarrow -4\leq x+y\leq -2$

$\Rightarrow 2020\leq x+y+2024\leq 2022$

$\Rightarrow A_{\min}=2020; A_{\max}=2022$

Vũ Anh Khôi
1 tháng 11 2024 lúc 21:57

Ko thèm tick cho người ta mà đòi hỏi câu khác ✅

Phạm Kiệt
Xem chi tiết