a ) a - 2.b = 2.( a + 2.b ) = a / 2b
b ) 2.a + 3.b = 6.a.b = 2a / 3b
B1:
Cho a/b = c/d CMR:
a) 2a + 3b/ 2a - 3b = 2c + 3d/ 2c - 3d
b)a.b/c.d = a^2 - b^2/ c^2 - d^2
c)(a +b / c+d)^2 = a^2 +b^2/c^2 + d^2
Cho a.b \(\in\) N thỏa 2a^2+a= 3b^2+b. Cm a-b và 2a+2b+1 chính phương
Tìm a,b,c ∈ Z thoả mãn:
a. a+b=5, b+c=-10 và c+a=-3
b. a.b=-2, b.c=-6 và c.a=3
a/ \(\left\{{}\begin{matrix}a+b=5\\b+c=-10\\a+c=-3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}a+b=5\\b+c=-10\\2\left(a+b+c\right)=-8\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}a+b=5\\b+c=-10\\\left(a+b+c\right)=-4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}c=-9\\a=6\\b=-1\end{matrix}\right.\) (TM)
b/ \(\left\{{}\begin{matrix}ab=-2\\bc=-6\\ac=3\end{matrix}\right.\)
\(\Rightarrow a^2b^2c^2=36\)
=> \(\left[{}\begin{matrix}abc=6\\abc=-6\end{matrix}\right.\)
TH1 : abc = - 6
Mà \(\left\{{}\begin{matrix}ab=-2\\bc=-6\\ac=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}c=3\\a=1\\b=-2\end{matrix}\right.\) (TM)
TH2 : abc = 6
Mà \(\left\{{}\begin{matrix}ab=-2\\bc=-6\\ac=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}c=-3\\a=-1\\b=2\end{matrix}\right.\) (TM)
Cho 2 số thực dương a và b thỏa mãn
a, sin (2 - 2ab) - sin (a + b) = 2a + a+ b - 2
Tìm Min của S = a + 2b
b, cos (x + y + 1) + 3 = cos(3xy) + 9xy - 3x - 3y
Tìm Min của S = xy + 2x
1 tìm x biết
a;1/2+x^2-3/4=0
b;5/3/4-|2x+1/3|=(-1/2)^2
2timf a b c biết
2a=3b=5cva 2a -3b+c=6
Bài 1:Cho a+b=5 và a.b=-6 Tính:
a) a.(4a+b)+4b
b) a2+b2
c) a4+b4
Bài 2: 2a-b=5 và a.b=3
a) a.(b-2)+b
b) 4.a2+b2
tìm a b c biet
(2a+1)^2 +(b+3)^4 + (5c-6)^2<0
(a-7)^2+(3b+2)^2+(4c-5)^6<=0
(12a-9)^2 +(8b+1)^4+(c+19)^6<=0
(2a+1)^2+(3b-1)^4<=3
a, Ta có: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\)<0
Vì (2a+1)2 >=0;(b+3)^4>=0;(5c-6)2 >=0
\(\Rightarrow\)Không tìm được a,b,c
Phá ngoặc rồi viết gọn
1 , a - ( a - b - c ) - ( b - c -a ) - ( c - b -a )
2 , - ( a + b + c ) - ( b - c -a ) + ( 1 - a - b ) - ( c - 3b )
3 , ( b - c - 6 ) - ( 7 - a + b ) + c
4 , - ( 3b - 2a - c ) - ( a - b - c ) - ( a - 2b -+ 2c )
5 , ( 4a - 3b + 2c ) - ( 4b - 3c - 2a ) - ( 4c - 3a + 2b ) + ( a - b ) - c
6, 2a - { a - b [ a - b - ( a + b + c ) + 2b ] - c - b }