Cho: a-b=3 và a.b=-2
a) a(5-b)-b(a+b)
b) a2+b2
c) a3-b3
Cho: a + b = 9, a.b = 20
Tính: a, A = a2 + b2
b, B = a4 + b4
c, C = a2 - b2
các bạn giúp mik với (giúp đc nhiều thì giúp mai nộp rồi)
Bài 1.Tính:
a) (a2- 4)(a2+4) b) (a-b+c)(a+b+c) g) (a – 5)(a2 + 10a + 25)c) (a-b)(a+b)(a2+b2)(a4+b4) d) (3x+y-2)2 h) (x2- 4x + 16)(x+4)
e) (22 - 1)(22 +1)(24 + 1)(28 + 1) f) (x+y)3 - (x-y)3 k)
Bài 2: Tìm x biết:
a) (2x + 1)2 - 4(x + 2)2 = 9;
b) (x -2)2 – (x +3)2 = 45
c) (x - 3)(x2 + 3x + 9) + x(x + 2)(2 - x) = 1;
d) (x + 1)3 - (x - 1)3 - 6(x - 1)2 = -10
Bài 3.Biết số tự nhiên x chia cho 7 dư 6.CMR:x2 chia cho 7 dư 1
Bài 4. So sánh:
a) A = 1997 . 1999 và B = 19982
b)A = 4(32 + 1)(34 + 1)…(364 + 1) và B = 3128 - 1
Bài 5: Cho tam giác ABC các đường trung tuyến BD và CE cắt nhau ở G . gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE // IK, DE = IK
Bài 6: Cho tam giác ABC. Trên cạnh AB lấy hai điểm M, N sao cho AM = MN = NB. Từ M và N kẻ các đường thẳng song song với BC, chúng cắt AC tại E và F. Tính độ dài các đoạn thẳng NF và BC biết ME = 5cm.
Bài 7: Cho D ABC có BC =4cm, các trung tuyến BD, CE. Gọi M,N theo thứ tự là trung điểm của BE,CD. Gọi giao điểm của MN với BD,CE theo thứ tự là P, Q
a) Tính MN b) CMR: MP =PQ =QN
Bài 8: Cho hình thang ABCD (AB // CD) các tia phân giác góc ngoài đỉnh A và D cắt nhau tại H. Tia phan giác góc ngoài đỉnh B và C cắt nhau ở K. CMR:
a) AH ^ DH ; BK ^ CK
b) HK // DC
c) Tính độ dài HK biết AB = a ; CD = b ; AD = c ; BC = dBài 1.Tính:
Tính: a+b=10 và a.b=-36
a) a.(2+b)+b(a+2)
b)a2+b2
c)a3+b3
cho a,b là 2 số thực phân biệt thỏa mãn a2-3a=b2-3b=1. Tính giá trị của:
a+b ; a2+b2 ; a3+b3 ; a4+b4 ; a5+b5 ; a6+b6
Cho a,b,c>0 và a+b+c=3. Tìm GTNN của
a) M= a2/a+1 + b2/b+1 + c2/b+1
b) N= 1/a + 4/b+1 + 9/c+2
c) P= a2/a+b + b2/b+c + c2/c+a
d)Q= a4 + b4 + c4 + a2 + b2 + c2 +2020
Cho a, b là 2 số thực phân biệt thỏa mãn a2+4a=b2+4b=1. CMR
a, a+b=-4
b,a3+b3=-76
c, a4+b4=322
Để tính giá trị biểu thức 20212 – 212 theo phương pháp dùng hằng đẳng thức thì áp dụng hằng đẳng thức nào sau đây?
A. (A – B)2 = A2 – 2AB + B2
B. (A + B)2 = A2 + 2AB + B2
C. A2 – B2 = (A + B)(A – B)
D. A3 – B3 = (A – B)(A2 + AB + B2)
a,Chứng minh bđt:
1,(a-1)(a-3)(a-4)(a-6)+9 ≥ 0
2,a2/b+c-a+b2/c+a-b+c2/a+b-c ≥ a+b+c (a,b,c là độ dài 3 cạnh tam giác)
b,Cho a2-4a+1=0.Tính giá trị của biểu thức A=a4+a2+1/a2
c,Cho a,b,c thỏa mãn 1/a+1/b+1/c=1/a+b+c.Tính giá trị của biểu thức M=(a5+b5)(b7+c7)(c2013+a2013)