Cho a;b thuộc N và \(2a^2+a=3b^2+b\)
CMR : a-b và 2a+2b+1 là SCP.
Cho a,b thuoc N
thoa 2a2 +a = 3b2 +b
CM: a-b va 2a+ 2b +1 CP
khong danh dau dc mong mn thong cam
Cho a, b, c >0 và dãy tỉ số \(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính giá trị của biểu thức P=\(\dfrac{\left(2a-b\right)\left(2b-c\right)\left(2c-a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
Cho các số thực a;b;c;d;e khác 0 thỏa mãn : a/b=b/c=c/d=d/e
Chứng minh rằng: (2a^4+3b^4+4c^4+5d^4)/(2b^4+3c^4+4d^4+5e^4)=a/e
Cho b^2=ac;c^2=bd Với b,c,d Khác 0, 2b+3c khác 4d,b^3+c^3 khác d^3
CMR
(a+b-c/b+c-d)^3=(2a+3b-4c/2b+3d-4c)^3
Giúp mình bài này với ạ!!
Mình đang gấp ạ
1/ Tìm các số a, b, c biết: a/2 =b/3=c/5 và a+2b-c=15
2/ Tìm a, b, c biết: 2a=3b ; 5b=7c và a-2b+c=8
3/ Cho hình chữ nhật có chu vi bằng chu vi của hình vuông có cạnh 7cm. Biết tỉ số giữa 2 cạnh của hcn là 5:2. Tính S của hcn
Cảm ơn trc ạ
Cho các số thực a;b;c;d;e khác 0 thỏa mãn : \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\) . Chứng minh rằng : \(\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\)
Cho abc \(\ne\) 0 và dãy tỉ số bằng nhau: \(\dfrac{5a+b+3c}{2a+c}=\dfrac{a+5b+c}{2b}=\dfrac{a+3b+3c}{b+c}\)
Tính: M = \(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Tìm các số nguyên a,b thỏa mãn:
a) ab = 3a-b.
b) ab+2a-3b = 11.