Viết tổng thành tích
a) a2 - b2
b) a2 - 2ab + b2
c) a2 -2a +1
Để tính giá trị biểu thức 20212 – 212 theo phương pháp dùng hằng đẳng thức thì áp dụng hằng đẳng thức nào sau đây?
A. (A – B)2 = A2 – 2AB + B2
B. (A + B)2 = A2 + 2AB + B2
C. A2 – B2 = (A + B)(A – B)
D. A3 – B3 = (A – B)(A2 + AB + B2)
phân tích da thức thành nhân tử
a) a2+b2
b) a4+b4
c) a2-a
d) a2-3a+2
e) a2-5a+6
g) a2-7a+12
\(a,Sửa:a^2-b^2=\left(a-b\right)\left(a+b\right)\\ b,=a^4+2a^2b^2+b^4-2a^2b^2\\ =\left(a^2+b^2\right)^2-2a^2b^2=\left(a^2+b^2-ab\sqrt{2}\right)\left(a^2+b^2+ab\sqrt{2}\right)\\ c,=a\left(a-1\right)\\ d,=a^2-a-2a+2=\left(a-1\right)\left(a-2\right)\\ e,=a^2-2a-3a+6=\left(a-2\right)\left(a-3\right)\\ g,=a^2-3a-4a+12=\left(a-3\right)\left(a-4\right)\)
Bài 1:Cho a+b=5 và a.b=-6 Tính:
a) a.(4a+b)+4b
b) a2+b2
c) a4+b4
Bài 2: 2a-b=5 và a.b=3
a) a.(b-2)+b
b) 4.a2+b2
Cho: a-b=3 và a.b=-2
a) a(5-b)-b(a+b)
b) a2+b2
c) a3-b3
b) Ta có: \(a^2+b^2\)
\(=\left(a-b\right)^2+2ab\)
\(=3^2+2\cdot\left(-2\right)=9-4=5\)
c) Ta có: \(a^3-b^3\)
\(=\left(a-b\right)^3-3ab\left(a-b\right)\)
\(=3^3-3\cdot\left(-2\right)\cdot3\)
\(=27+18=45\)
cho mình hỏi yêu cầu đề bài là gì vậy?
Bài 1/ Viết chương trình nhập từ bàn phím hai dãy số nguyên A,B gồm n phần tử (n nhập từ bàn phím và n nhỏ hơn hoặc bằng 30). Trộn 2 dãy số trên thành dãy số mới C theo nguyên tắc sau:
a=a1,a2,a3,..,an.
b=b1,b2b,b3,...,bn.
c=a1,b1,a2,b2,a3,b3,...,an,bn.
Vd: n=6. A=4 5 6 1 2 3. B=9 4 7 0 8 4.
>> C=4 9 5 4 6 7 1 0 2 8 3 4 .
Bài 2/ Nhập vào 1 dãy số nguyên. Cho biết dãy đã sắp xếp chưa tăng dần hay giảm dần. Nếu dãy đã sắp xép hãy cho nhập số n bất kì và chèn vào dãy sao cho dãy vẫn đảm bảo được sắp xếp (không được sắp xếp sau khi chèn thêm). Nếu dãy chưa sắp xếp thì sắp xếp lại dãy tăng dần.
Vd: Dữ liệu vào: 5 6 7 8 9; n=6.
Dữ liệu ra: dãy đã được sắp xếp tăng dần và sau khi chèn thêm n là: 5 6 6 7 8 9.
" giúp e vs 19h 29/7 e nộp r "
Bài 1:
Uses crt;
var i,n,j:integer;
a,b,c:array[1..100000] of integer;
Begin
clrscr;
readln(n);
for i:= 1 to n do readln(a[i]);
for i:= 1 to n do readln(b[i]);
j:=0;
for i:= 1 to n do
Begin
inc(j);
c[j] := a[i];
inc(j);
c[j] := b[i];
end;
for i:= 1 to j do write(c[i],' ');
readln;
end.
Câu 19: Phân tích (a2+ 4)2 – 16a2 thành nhân tử ta được
A. (a –2)2(a + 2)2
B. (a + 2)4
C. (a2+ 4a + 4)(a2 – 2a + 1)
D. (a2+ 4)2
\(\left(a^2+4\right)^2-16a^2\\ =\left(a^2+4\right)^2-\left(4a\right)^2\\ =\left(a^2-4a+4\right)\left(a^2+4a+4\right)\\ =\left(a-2\right)^2\left(a+2\right)^2\)
Chọn A.
Địa chỉ ô được viết như sau?
A. A2+B2 B. 2A + 2B C. 2,A + 2,B D. 2AB + 2 BA
Rút gọn biểu thức
a. 2x+2y/a2+2ab+b2 . ax-ay+bx-by/2x2-2y2
b. a+b-c/a2+2ab+b2-c2 . a2+2ab+b2+ac+bc/a2-b2
c.x3+1/x2+2x+1 . x2-1/2x2-2x+2
d. x8-1/x+1 . 1/ (x2+1) (x4+1)
e. x-y/xy+y2 - 3x+y/x2-xy . y-x/x+y
a2 c2... là em viết số mũ đó ạ. anh chị giúp em giải mấy bài này nha
\(=\dfrac{2\left(x+y\right)}{\left(a+b\right)^2}.\dfrac{a\left(x-y\right)+b\left(x-y\right)}{2\left(x^2-y^2\right)}\)
\(=\dfrac{2\left(x+y\right)}{\left(a+b\right)^2}.\dfrac{\left(x-y\right)\left(a+b\right)}{2\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{1}{a+b}\)
\(=\dfrac{a+b-c}{\left(a+b\right)^2-c^2}.\dfrac{\left(a+b\right)^2+c\left(a+b\right)}{\left(a-b\right)\left(a+b\right)}\)
\(=\dfrac{a+b-c}{\left(a+b-c\right)\left(a+b+c\right)}.\dfrac{\left(a+b\right)\left(a+b+c\right)}{\left(a-b\right)\left(a+b\right)}\)
\(=\dfrac{1}{a-b}\)
\(c,\dfrac{x^3+1}{x^2+2x+1}.\dfrac{x^2-1}{2x^2-2x+2}\)
\(=\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)^2}.\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x^2-x+1\right)}\) \(=\dfrac{x-1}{2}\) \(d,\dfrac{x^8-1}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^4\right)^2-1}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^4-1\right)\left(x^4+1\right)}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^2+1\right)\left(x^2-1\right)}{x+1}.\dfrac{1}{x^2+1}\) \(=\dfrac{\left(x-1\right)\left(x+1\right)}{x+1}\) \(=x-1\) \(e,\dfrac{x-y}{xy+y^2}-\dfrac{3x+y}{x^2-xy}.\dfrac{y-x}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{3x+y}{x\left(x-y\right)}.\dfrac{-\left(x-y\right)}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{3x+y}{x}.\dfrac{-1}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{-3x-y}{x\left(x+y\right)}\) \(=\dfrac{x\left(x-y\right)+y\left(3x+y\right)}{xy\left(x+y\right)}\) \(=\dfrac{x^2-xy+3xy+y^2}{xy\left(x+y\right)}\) \(=\dfrac{x^2+2xy+y^2}{xy\left(x+y\right)}\) \(=\dfrac{\left(x+y\right)^2}{xy\left(x+y\right)}=\dfrac{x+y}{xy}\)cho a,b,c thuộc [0;1]
CMR : a2+b2+c2≤1+a2b+b2c+c2a
Lời giải:
Do $a,b,c\in [0;1]$ nên:
$a^2(1-b)\leq 0$
$b^2(1-c)\leq 0$
$c^2(1-a)\leq 0$
Cộng theo vế suy ra: $a^2+b^2+c^2\leq a^2b+b^2c+c^2a$
Ta có đpcm.
Với a, b là hai số bất kì, trong các đẳng thức sau, đẳng thức nào không phải hằng đẳng
thức?
A. (a+b)2 =a2 +2ab+b2 B. a2 – 1 =3a C. a(2a+b) =2a2 + ab D. a(b+c) =ab+ac