Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thảo Vi
Xem chi tiết
Etermintrude💫
8 tháng 3 2021 lúc 20:42

undefinedundefinedundefined

Nguyễn Đức Lâm
Xem chi tiết
Nguyễn Lê Hà Trang
Xem chi tiết
Lê Lan Hương
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 12 2020 lúc 16:25

\(VT=\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)^2\)

\(VT\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{25}{2}\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Hoàng Khánh Chi
Xem chi tiết
Akai Haruma
11 tháng 2 lúc 0:22

Lời giải;

Vế 1:

Áp dụng BĐT AM-GM:

$2=(x^2+y^2)(1+1)\geq (x+y)^2\Rightarrow x+y\leq \sqrt{2}$

$x^3+\frac{x}{2}\geq \sqrt{2}x^2$

$y^3+\frac{y}{2}\geq \sqrt{2}y^2$

$\Rightarrow x^3+y^3+\frac{x+y}{2}\geq \sqrt{2}(x^2+y^2)=\sqrt{2}$

$\Rightarrow x^3+y^3\geq \sqrt{2}-\frac{x+y}{2}\geq \sqrt{2}-\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}$

-----------------------

Vế 2:

$x^2+y^2=1$

$\Rightarrow x^2=1-y^2\leq 1\Rightarrow -1\leq x\leq 1$

$y^2=1-x^2\leq 1\Rightarrow -1\leq y\leq 1$

$\Rightarrow x^3\leq x^2; y^3\leq y^2$

$\Rightarrow x^3+y^3\leq x^2+y^2$ hay $x^3+y^3\leq 1$

Đặng Noan ♥
Xem chi tiết
Thanh Tùng DZ
28 tháng 12 2019 lúc 8:54

\(\frac{x\sqrt{y}+y\sqrt{x}}{x+y}-\frac{x+y}{2}\le\frac{x\sqrt{y}+y\sqrt{x}}{2\sqrt{xy}}-\frac{x+y}{2}=\frac{\sqrt{x}+\sqrt{y}}{2}-\frac{x+y}{2}\)

Cần chứng minh : \(\frac{\sqrt{x}+\sqrt{y}}{2}-\frac{x+y}{2}\le\frac{1}{4}\Leftrightarrow\sqrt{x}+\sqrt{y}-x-y\le\frac{1}{2}\Leftrightarrow2\sqrt{x}+2\sqrt{y}-2x-2y\le1\)

\(\Leftrightarrow2x+2y-2\sqrt{x}-2\sqrt{y}+1\ge0\)\(\Leftrightarrow\left(\sqrt{2x}-\frac{1}{\sqrt{2}}\right)^2+\left(\sqrt{2y}-\frac{1}{\sqrt{2}}\right)^2\ge0\) 

Vì BĐT cuối luôn đúng nên BĐT cần chứng minh luôn đúng khi x = y = \(\frac{1}{4}\)

Khách vãng lai đã xóa
Kudo Shinichi
28 tháng 12 2019 lúc 8:50

\(VT=\frac{x\sqrt{y}+y\sqrt{x}}{x+y}-\frac{x+y}{2}\le\frac{\sqrt{2xy\left(x+y\right)}}{x+y}-\frac{x+y}{2}\)

\(\le\frac{\left(x+y\right)\sqrt{\frac{x+y}{2}}}{x+y}-\frac{x+y}{2}\) . Cm : \(\sqrt{\frac{x+y}{2}}-\frac{x+y}{2}\le\frac{1}{4}\)

Đặt \(x+y=t>0\)thì :

\(\sqrt{\frac{t}{2}}-\frac{t}{2}\le\frac{1}{4}\Leftrightarrow-\frac{1}{4}\left(\sqrt{2t}-1\right)^2\le0\) ( đúng )

Chúc bạn học tốt !!!

Khách vãng lai đã xóa
Phạm Duy
Xem chi tiết
Postgass D Ace
Xem chi tiết
Cố Tử Thần
10 tháng 3 2020 lúc 21:12

c1: phân tích từng cái

c2, nhân x cho (1) y cho 2

sau đs dùng bunhia 

từ x+y=1

=> x^2-xy+y^2...

Khách vãng lai đã xóa
tth_new
11 tháng 3 2020 lúc 7:13

\(VT-VP=\frac{\left(3x^2+7xy+3y^2\right)\left(x-y\right)^2}{3\left(1-x^2\right)\left(1-y^2\right)}\ge0\)

Khách vãng lai đã xóa
Kiệt Nguyễn
20 tháng 10 2020 lúc 11:19

Áp dụng giả thiết x + y = 1, ta được:\(\frac{x}{1-x^2}+\frac{y}{1-y^2}=\frac{x}{\left(1+x\right)\left(1-x\right)}+\frac{y}{\left(1+y\right)\left(1-y\right)}=\frac{x}{y\left(1+x\right)}+\frac{y}{x\left(1+y\right)}\)

Theo bất đẳng thức AM - GM:\(\frac{x}{y\left(1+x\right)}+\frac{y}{x\left(1+y\right)}\ge2\sqrt{\frac{x}{y\left(1+x\right)}.\frac{y}{x\left(1+y\right)}}=\frac{2}{\sqrt{xy+x+y+1}}=\frac{2}{\sqrt{xy+2}}\ge\frac{2}{\sqrt{\frac{\left(x+y\right)^2}{4}+2}}=\frac{4}{3}\)Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi x = y = 1/2

Khách vãng lai đã xóa
Nguyễn Đức Lâm
Xem chi tiết