Tính giá trị biểu thức:B=\(\left(x^2-1\right)\left(x^2-2\right)....\left(x^2-2013\right)\)tại x=10
Tính giá trị của biểu thức:
B\(=\)\(2x^5\) - \(5y^3\)+ 4 biết \(\left(x-1\right)^2\)+\(\left(y+2\right)^2\)\(=\)\(0\)
Ta có:
\(\left(x-1\right)^2+\left(y+2\right)^2=0\)
Do: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
Mặt khác: \(\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Thay vào B ta có:
\(B=2\cdot1^5-5\cdot\left(-2\right)^3+4=2\cdot1-5\cdot-8+4=2+40+4=46\)
1) cho A=\(\frac{\left(x+2012\right)^2+2\left(x+2013\right)\left(x-2013\right)+\left(x-2012\right)^2}{\left(x^2-2012\right)+\left(x^2-2013\right)}\)
Tính giá trị A tại x=20162017
Tìm tập xác định, rồi rút gọn biểu thức:
B = \(\dfrac{y-x}{xy}\) : [\(\dfrac{y^2}{\left(x-y\right)^2\left(x+y\right)}\) - \(\dfrac{2x^2y}{x^4-2x^2y^2+y^4}\) + \(\dfrac{x^2}{\left(y^2-x^2\right)\left(x+y\right)}\)]
Tính giá trị của B với x = -\(\dfrac{1}{2}\), y = 2
Cho biểu thức A, tính giá trị của A tại \(x=2012^{2013}\)
\(A=\frac{\left(x+2012\right)^2+2\left(x+2013\right)\left(x-2013\right)+\left(x-2012\right)^2}{\left(x^2-2012\right)+\left(x^2-2013\right)}\)
Giúp mình liền nhé, đúng thì mình tick cho ^_^
Cho các số x,y thỏa mãn đẳng thức:
\(^{2x^2}\)+\(^{2y^2}\)+3xy-x+y+1=0
Tính giá trị của biểu thức:
B=\(^{\left(x+y\right)^{2018}}\)+\(\left(x-2\right)^{2018}\)+\(\left(y-1\right)^{2018}\)
2x2 + 2y2 + 3xy - x + y + 1 = 0
2x2 + 2y2 + 4xy - xy - x + y + 1 = 0
(2x2 + 2y2 + 4xy) + (-xy - x) + (y + 1) = 0
2(x + y)2 - x(y + 1) + (y + 1) = 0
2(x + y)2 + (y + 1)(1 - x) = 0
Do (x + y)2 \(\ge0\)
\(\Rightarrow\) 2(x + y)2 \(\ge0\)
\(\Rightarrow\) 2(x + y)2 + (y + 1)(1 - x) = 0 \(\Leftrightarrow\) (y + 1)(1 - x) = 0
\(\Rightarrow y+1=0;1-x=0\)
*) y + 1 = 0
y = -1
*) 1 - x = 0
x = 1
Với x = 1; y = -1, ta có:
B = [1 + (-1)]2018 + (1 - 2)2018 + (-1 - 1)2018
= 1 + 22018
Giá trị của biểu thức đại số \(\left(x^2-1\right)\left(x^2-2\right)\left(x^2-3\right)...\left(x^2-2013\right)\)tại x=5 là ?
BT6: Tính giá trị của biểu thức
\(1,A=5x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)tại \(x=-5\)
\(2,B=x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)tại \(x=10,y=-1\)
1, \(A=5x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)
\(A=5x^3-15x+7x^2-5x^3-7x^2\)
\(A=\left(5x^3-5x^3\right)+\left(7x^2-7x^2\right)-15x\)
\(A=-15x\)
Thay \(x=-5\) vào A ta được:
\(-15\cdot-5=75\)
Vậy: ....
2. \(B=x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)
\(B=x^3-3x+7x^2-5x^3-7x^2\)
\(B=\left(x^3-5x^3\right)+\left(7x^2-7x^2\right)-3x\)
\(B=-4x^3-3x\)
Thay \(x=10,y=-1\) vào B ta được:
\(-4\cdot10^3-3\cdot10=-4\cdot1000-3\cdot10=-4000-30=-4030\)
Vậy: ....
BT2: Tính giá trị biểu thức
\(M=\left(7-2x\right)\left(4x^2+14x+49\right)-\left(64-8x^3\right)\)tại \(x=1\)
\(P=\left(2x-1\right)\left(4x^2-2x+1\right)-\left(1-2x\right)\left(1+2x+4x^2\right)\)tại \(x=10\)
\(M=\left(7-2x\right)\left(4x^2+14x+49\right)-\left(64-8x^3\right)\)
\(M=\left(7-2x\right)\left[\left(2x\right)^2+2x\cdot7+7^2\right]-\left(64-8x^3\right)\)
\(M=\left[7^3-\left(2x\right)^3\right]-\left(64-8x^3\right)\)
\(M=343-8x^3-64+8x^3\)
\(M=279\)
Vậy M có giá trị 279 với mọi x
\(P=\left(2x-1\right)\left(4x^2-2x+1\right)-\left(1-2x\right)\left(1+2x+4x^2\right)\)
\(P=8x^3-4x^2+2x-4x^2+2x-1-1+8x^3\)
\(P=16x^3-8x^2+4x-2\)
Thay \(x=10\) vào P ta có:
\(P=16\cdot10^3-8\cdot10^2+4\cdot10-2=15238\)
Vậy P có giá trị 15238 tại x=10
a: M=343-8x^3-64+8x^3=279
b: P=8x^3-4x^2+2x-4x^2+2x-1-1+8x^3
=16x^3-8x^2+4x-2
=16*10^3-8*10^2+4*10-2=15238
Tính giá trị biểu thức:
a) \(\left(x-10\right)^2-x.\left(x+8\right)với\)\(x=0,98\)
b) \(x^3-9x^2+27.x-27\) với x =5
c) \(6x.\left(2x-7\right)-\left(3x-5\right).\left(4x+7\right)\) tại x = \(-2\)
a) \(\left(x-10\right)^2-x\left(x+8\right)=-12x+100=-11,76+100=88,24\)
b) \(x^3-9x^2+27x-27=\left(x-3\right)^3=\left(5-3\right)^3=8\)
c) \(6x\left(2x-7\right)-\left(3x-5\right)\left(4x+7\right)=-43x+35=121\)
\(a)\) \(\left(x-10\right)^{^2}-x.\left(x+8\right)\) \(với\) \(x=0,98\)
\(=-12x+100\)
\(=-11,76+100\)
\(=88,24\)
\(b)\) \(x^3-9x^2+27.x-27\) \(với\) \(x=5\)
\(=\left(x-3\right)^3\)
\(=\left(5-3\right)^3\)
\(=8\)
\(c)\)\(6x.\left(2x-7\right)-\left(3x-5\right).\left(4x+7\right)\) \(tại\) \(x=-2\)
\(=-43+35\)
\(=121\)
Chúc bạn hôc tốt nha ❤