11. Rút gọn biểu thức:
A = (3 + 1) (32 + 1) (34 + 1) ... (364 + 1)
Rút gọn biểu thức:
A=1 + 1/2 + 1/22 + 1/32 + ..... + 1/22012
a.Chứng tỏ rằng B = 1/22 + 1/32 + 1/42 + 1/52 + 1/62 + 1/72 +1/82 < 1
b.Cho S = 3/1.4 + 3/4.7 + 3/7.10 +......+3/40.43 + 3/43.46 hãy chứng tỏ rằng S < 1
Sửa đề: 1/32=1/23
Giải:
A=1+1/2+1/22+1/23+..1/22012
2A=2+1+1/2+1/22+...+1/22011
2A-A=(2+1+1/2+1/22+...+1/22011)-(1+1/2+1/22+1/23+...+1/22012)
A=2-22012
Chúc bạn học tốt!
so sánh hai số bằng cách vận dụng hằng đẳng thức:
A=4(32+1)(34+1)...(364+1) và B=3128-1
Rút gọn biểu thức:
A=\(\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}\)
`A=1/[\sqrt{3}+1]+1/[\sqrt{3}-1]`
`A=[\sqrt{3}-1+\sqrt{3}+1]/[3-1]`
`A=[2\sqrt{3}]/2=\sqrt{3}`
\(A=\dfrac{1}{\sqrt{3+1}}+\dfrac{1}{\sqrt{3-1}}\)
\(A=\dfrac{\sqrt{3-1+\sqrt{3+1}}}{\left(\sqrt{3+1}\right)\left(\sqrt{3-1}\right)}\)
\(A=\dfrac{2\sqrt{3}}{3-1}\)
\(A=\dfrac{2\sqrt{3}}{2}\)
\(A\sqrt{3}\)
\(A=\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}\)
\(A=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{3-1}\)
\(A=\dfrac{2\sqrt{3}}{2}\)
\(A=\sqrt{3}\)
Rút gọn biểu thức:
A = \(\dfrac{1}{2+\sqrt{3}}\) + \(\dfrac{1}{2-\sqrt{3}}\)
Bài 3 :( 1,5 đ)a) Tìm x, biết :( 4x -5)( 6 -x)+ (2x -3 )2= 0 b) Rút gọn biểu thức :A = 8. ( 32+ 1)(34+ 1 )(38+ 1)Bài 4 : (2,0 đ) Cho tam giác ABC vuô Bài 3 :( 1,5 đ)a) Tìm x, biết :( 4x -5)( 6 -x)+ (2x -3 )2= 0 b) Rút gọn biểu thức :A = 8. ( 32+ 1)(34+ 1 )(38+ 1)Bài 4 : (2,0 đ) Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC .a) Chứng minh tứgiác ADHE là hình chữnhật .b) Gọi F là trung điểm của của BH . Chứng minh DE ⊥DF . ng tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC .a) Chứng minh tứgiác ADHE là hình chữnhật .b) Gọi F là trung điểm của của BH . Chứng minh DE ⊥DF .
yggucbsgfuyvfbsudy
Rút gọn biểu thức:
A = \([(32)^{\dfrac{2}{3}}]^{\dfrac{-2}{5}}\)
B= \(\dfrac{x^{-2}+y^{-2}}{x^{-1}+y^{-1}}\)
C = \((a^{\dfrac{1}{3}}-b^{\dfrac{2}{3}})(a^{\dfrac{2}{3}}+a^{\dfrac{1}{3}}×b^{\dfrac{4}{3}}+b^{\dfrac{4}{9}})\)
D = \((x+y^\dfrac{3}{2}÷\sqrt{x})^\dfrac{2}{3}÷[\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}}+\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}]^\dfrac{2}{3}\)
E = \([\dfrac{1}{x^{\dfrac{1}{2}}-4x^{\dfrac{-1}{2}}}-\dfrac{2\sqrt[3]{x}}{x\sqrt[3]{x}-4\sqrt[3]{x}}]^{-2}-\sqrt{x^2+8x+16}\)
Rút gọn biểu thức:
a) 3\(\sqrt{32}-2\sqrt{2}+\sqrt{50}\)
mai mk thi rùi cầu cho các bạn trai xinh gái đẹp giúp mk với huhu
Rút gọn biểu thức:
a, \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\)
b, \(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
a: Ta có: \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
b: Ta có: \(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)-\left(2\sqrt{a}-1\right)+1\)
\(=a+\sqrt{a}-2\sqrt{a}+1+1\)
\(=a-\sqrt{a}+2\)
a,ĐKXĐ: tự tìm :v
\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\)
\(=\dfrac{15\sqrt{x}-11}{\left(x+2\sqrt{x}+1\right)-4}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\)
\(=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+1\right)^2-4}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\)
\(=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\)
\(=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\dfrac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+7\sqrt{x}-6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\dfrac{2x+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6+2x+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{9\sqrt{x}-x-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\left(9\sqrt{x}-9\right)-\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{9\left(\sqrt{x}-1\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(10-\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(\dfrac{10-\sqrt{x}}{\sqrt{x}+3}\)
Rút gọn biểu thức:A=1+1/2+1/22+1/23+...+1/22012
Ta có :
\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)
\(2A=1+2+\frac{1}{2}+...+\frac{1}{2^{2011}}\)
\(2A-A=\left(1+2+\frac{1}{2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)\)
\(A=2-\frac{1}{2^{2012}}\)
\(A=\frac{2^{2013}-1}{2^{2012}}\)
Vậy \(A=\frac{2^{2013}-1}{2^{2012}}\)