e, x/2=y/3; y/5 = 2/4 và x-y + 2 = -49
Tính đạo hàm cấp hai của mỗi hàm số sau:
a) \(y = 2{x^4} - 3{x^3} + 5{x^2}\)
b) \(y = \frac{2}{{3 - x}}\)
c) \(y = \sin 2x\cos x\)
d) \(y = {e^{ - 2x + 3}}\)
e) \(y = \ln (x + 1)\)
f) \(y = \ln ({e^x} + 1)\)
\(a,y'=8x^3-9x^2+10x\\ \Rightarrow y''=24x^2-18x+10\\ b,y'=\dfrac{2}{\left(3-x\right)^2}\\ \Rightarrow y''=\dfrac{4}{\left(3-x\right)^3}\)
\(c,y'=2cos2xcosx-sin2xsinx\\ \Rightarrow y''=-5sin\left(2x\right)cos\left(x\right)-4cos\left(2x\right)sin\left(x\right)\\ d,y'=-2e^{-2x+3}\\ \Rightarrow y''=4e^{-2x+3}\)
e,
\(y = \ln (x + 1) \Rightarrow y' = \frac{1}{{x + 1}} \Rightarrow y'' = - \frac{1}{{{{\left( {x + 1} \right)}^2}}}\)
f,
\(y = \ln ({e^x} + 1) \Rightarrow y' = \frac{{{e^x}}}{{{e^x} + 1}} \Rightarrow y'' = - \frac{{{e^x}.{e^x}}}{{{{\left( {{e^x} + 1} \right)}^2}}} = - \frac{{{e^{2x}}}}{{{{\left( {{e^x} + 1} \right)}^2}}}\)
2 2 2 2 2 2 3 4 2 2 3 2 3 2 3 5 2 . 3 ; 5 . 2 ; . ; . 3 ; . 3 5 2 3 A xy x y B x y xy C x y x D x y xy E x y xy a) Trong các đơn thức trên, đơn thức nào đồng dạng với nhau? b) Tính A + C ; B + D + E ; B – D – E.
Bài 1: Cho hai số thực x,y (x>y) thỏa mãn x+y =5 và xy=3. Tính x^2+y^2, x^3+y^3 và x-y
giúp e với ạ, e cảm ơn
x^2+y^2=(x+y)^2-2xy
=5^2-2*3
=25-6
=19
x^3+y^3=(x+y)^3-3xy(x+y)
=5^3-3*3*5
=125-9*5
=80
(x-y)^2=(x+y)^2-4xy=5^2-4*3=13
=>\(x-y=\sqrt{13}\)
thu gọn:
a/ (x-2)3+(x+2)3-6x.(x+2)(x-2)
b/ (2x-y)3+(2x+y)3
c/ (x-2)(x+2)-(x2+2x+4)(x-2)
pls giúp e vs ac ơi,cứu vãn e
Lời giải:
a. $(x-2)^3+(x+2)^3-6x(x+2)(x-2)$
$=x^3-6x^2+12x-8+(x^3+6x^2+12x+8)-6x(x^2-4)$
$=2x^3+24x-6x^3+24x=-4x^3+48x$
b.
$(2x-y)^3+(2x+y)^3$
$=8x^3-12x^2y+6xy^2-y^3+8x^3+12x^2y+6xy^2+y^3$
$=16x^3+12xy^2$
c.
$(x-2)(x+2)-(x^2+2x+4)(x-2)$
$=(x^2-4)-(x^3-2^3)=x^2-4-x^3+8=x^2-x^3+4$
ai giúp e bài này với. Ai làm đúng e sẽ like nhiệt tình ạ. E cảm ơn trong hôm nay là đc ạ. Mọi người làm chi tiết đc ko ạ. Vì bài này e nộp cho cô mà khó quá :(((
2x2+3(x-1)(x+1)=5x(x+1)
Làm phép nhân a, (x-5)(2x+3)-2x(x-3)+x+7
b, x(x2+x+1)-x-5 c, x(2x+1)-x2(x+2)+x3-x+3
d, (x2-xy+y2)(x+y) e, (x2+xy+y2)(x-y)
f, (x-2)(x2+2x+4) g, (x3+x2y2+y3)(x-y)
Tìm đạo hàm của mỗi hàm số sau:
a) \(y = 4{x^3} - 3{x^2} + 2x + 10\)
b) \(y = \frac{{x + 1}}{{x - 1}}\)
c) \(y = - 2x\sqrt x \)
d) \(y = 3\sin x + 4\cos x - \tan x\)
e) \(y = {4^x} + 2{e^x}\)
f) \(y = x\ln x\)
a: \(y'=4\cdot3x^2-3\cdot2x+2=12x^2-6x+2\)
b: \(y'=\dfrac{\left(x+1\right)'\left(x-1\right)-\left(x+1\right)\left(x-1\right)'}{\left(x-1\right)^2}=\dfrac{x-1-x-1}{\left(x-1\right)^2}=\dfrac{-2}{\left(x-1\right)^2}\)
c: \(y'=-2\cdot\left(\sqrt{x}\cdot x\right)'\)
\(=-2\cdot\left(\dfrac{x+x}{2\sqrt{x}}\right)=-2\cdot\dfrac{2x}{2\sqrt{x}}=-2\sqrt{x}\)
d: \(y'=\left(3sinx+4cosx-tanx\right)\)'
\(=3cosx-4sinx+\dfrac{1}{cos^2x}\)
e: \(y'=\left(4^x+2e^x\right)'\)
\(=4^x\cdot ln4+2\cdot e^x\)
f: \(y'=\left(x\cdot lnx\right)'=lnx+1\)
a, x : 2 = y : ( - 5 ) và x - y = 14
b, x/2 = y/5 = z/6 và x - y + z = 24
c, 2x = 3y = 6z và x + y - z = 8
d, x/3 = y/2 = z /-3 và 2x - 3y + 4z = 48
e, x/5 = y/6 = z/7 và x - y = 36
f, x/12 = y/13 = z/15 và 3x + 2y = 52
giúp e vs ạ, e cần gấp..hicc
e cảm ơn ạ
a) x : 2 = y : (-5)
⇒ x/2 = y/(-5)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/2 = y/(-5) = (x - y)/(2 + 5) = 14/7 =
x/2 = 2 ⇒ x = 2.2 = 4
y/(-5) = 2 ⇒ y = 2.(-5) = -10
Vậy x = 4; y = -10
b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/2 = y/5 = z/6 = (x - y + z)/(2 - 5 + 6) = 24/3 = 8
x/2 = 8 ⇒ x = 8.2 = 16
y/5 = 9 ⇒ y = 8.5 = 40
z/6 = 8 ⇒ z = 8.6 = 48
Vậy x = 16; y = 40; z = 48
c) 2x = 3y = 6z
⇒ x/(1/2) = y/(1/3) = z/(1/6)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/(1/2) = y/(1/3) = z/(1/6) = (x + y - z)/(1/2 + 1/3 - 1/6) = 8/(2/3) = 12
2x = 12 ⇒ x = 12 : 2 = 6
3y = 12 ⇒ y = 12 : 3 = 4
6z = 12 ⇒ z = 12 : 6 = 2
Vậy x = 6; y = 4; z = 2
d) x/3 = y/2 = z/(-3)
⇒ 2x/6 = 3y/6 = 4z/(-12)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
2x/6 = 3y/6 = 4z/(-12) = (2x - 3y + 4z)/(6 - 6 - 12) = 48/(-12) = -4
x/3 = -4 ⇒ x = -4.3 = -12
y/2 = -4 ⇒ y = -4.2 = -8
z/(-3) = -4 ⇒ z = -4.(-3) = 12
Vậy x = -12; y = -8; z = 12
e) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/5 = y/6 = z/7 = (x - y)/(5 - 6) = 36/(-1) = -36
x/5 = -36 ⇒ x = -36.5 = -180
y/6 = -36 ⇒ y = -36.6 = -216
z/7 = -36 ⇒ z = -36.7 = -252
Vậy x = -180; y = -216; z = -252
f) x/12 = y/13
⇒ 3x/36 = 2y/26
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
3x/36 = 2y/26 = (3x + 2y)/(36 + 26) = 52/62 = 26/31
x/12 = 26/31 ⇒ x = 26/31 . 12 = 312/31
y/13 = 26/31 ⇒ y = 26/31 . 13 = 338/31
z/15 = 26/31 ⇒ z = 26/31 . 15 = 390/31
Vậy x = 312/31; y = 338/31; z = 390/31
Cho biết x-y=4 và xy =1 . Tính giá trị biểu thức A= x^2+ y^2; B=x^3-y^3 ; C=x^4+y^4
giúp e với ạ, e cảm ơn
\(x=\dfrac{1}{y}\Rightarrow\dfrac{1}{y}-y=4\\ \Rightarrow y^2+4y-1=0\\ \Leftrightarrow\left[{}\begin{matrix}y=-2-\sqrt{5}\Rightarrow x=2-\sqrt{5}\\y=-2+\sqrt{5}\Rightarrow x=2+\sqrt{5}\end{matrix}\right.\)
Với \(x=2-\sqrt{5};y=-2-\sqrt{5}\)
\(A=x^2+y^2=18\\ B=x^3-y^3=76\\ C=x^4+y^2=322\)
Với \(x=2+\sqrt{5};y=-2+\sqrt{5}\)
\(A=x^2+y^2=18\\ B=x^3-y^3=76\\ C=x^4+y^4=322\)
A=x^2+y^2
=(x-y)^2+2xy
=4^2+2=18
B=(x-y)^3+3xy(x-y)
=4^3+3*1*4
=64+12=76
C=(x^2+y^2)^2-2x^2y^2
=18^2-2
=322
4. Tính đạo hàm của các hàm số sau:
a) \(y = (3x^2-4x+1)^{-4}\)
b) \(y = 3^{x^2-1} + e^{-x+1}\)
c) \(y = \ln (x^2-4x) + \log_{3} (2x-1)\)
d) \(y =x . \ln x + 2^{\frac{x-1}{x+1}}\)
e) \(y = x^{-7} - \ln (x^2-1)\)
`a)TXĐ:R\\{1;1/3}`
`y'=[-4(6x-4)]/[(3x^2-4x+1)^5]`
`b)TXĐ:R`
`y'=2x. 3^[x^2-1] ln 3-e^[-x+1]`
`c)TXĐ: (4;+oo)`
`y'=[2x-4]/[x^2-4x]+2/[(2x-1).ln 3]`
`d)TXĐ:(0;+oo)`
`y'=ln x+2/[(x+1)^2].2^[[x-1]/[x+1]].ln 2`
`e)TXĐ:(-oo;-1)uu(1;+oo)`
`y'=-7x^[-8]-[2x]/[x^2-1]`
Lời giải:
a.
$y'=-4(3x^2-4x+1)^{-5}(3x^2-4x+1)'$
$=-4(3x^2-4x+1)^{-5}(6x-4)$
$=-8(3x-2)(3x^2-4x+1)^{-5}$
b.
$y'=(3^{x^2-1})'+(e^{-x+1})'$
$=(x^2-1)'3^{x^2-1}\ln 3 + (-x+1)'e^{-x+1}$
$=2x.3^{x^2-1}.\ln 3 -e^{-x+1}$
c.
$y'=\frac{(x^2-4x)'}{x^2-4x}+\frac{(2x-1)'}{(2x-1)\ln 3}$
$=\frac{2x-4}{x^2-4x}+\frac{2}{(2x-1)\ln 3}$
d.
\(y'=(x\ln x)'+(2^{\frac{x-1}{x+1}})'=x(\ln x)'+x'\ln x+(\frac{x-1}{x+1})'.2^{\frac{x-1}{x+1}}\ln 2\)
\(=x.\frac{1}{x}+\ln x+\frac{2}{(x+1)^2}.2^{\frac{x-1}{x+1}}\ln 2\\ =1+\ln x+\frac{2^{\frac{2x}{x+1}}\ln 2}{(x+1)^2}\)
e.
\(y'=-7x^{-8}-\frac{(x^2-1)'}{x^2-1}=-7x^{-8}-\frac{2x}{x^2-1}\)
1.Tìm x, y E N: 2^x + 57 = y^2
2.Tìm x E N: 3^x + 4^x = 5^x
Xét x lẻ.
Ta có:\(x=2k+1\Rightarrow2^x=2^{2k+1}=2\cdot4^k\equiv2\cdot1\left(mod3\right)\equiv2\left(mod3\right)\)
\(\Rightarrow y^2\equiv2\left(mod3\right)\) ( vô lý )
Xét x chẵn.
Ta có:\(x=2n\Rightarrow2^{2n}+57=y^2\Rightarrow\left(y-2^n\right)\left(y+2^n\right)=57=3\cdot17=1\cdot57\)
Dễ dàng nhận ra \(y+2^n>y-2^n\)
Đến đây xét ước tiếp nha mem.