Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Xuân Doanh
Xem chi tiết
Nguyễn thành Đạt
3 tháng 2 2023 lúc 22:07

 

b.ta chia B thành 10 nhóm mỗi nhóm có 6 hạng tử  \(B=\left(2+2^2+2^3+2^4+2^5+2^6\right)+....+\left(2^{55}+2^{56}+2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(B\text{=}2\left(1+2+2^2+2^3+2^4+2^5\right)+...+2^{55}\left(1+2+2^2+2^3+2^4+2^5\right)\)

\(B\text{=}2.63+...+2^{56}.63\)

\(\Rightarrow B⋮63\)

\(\Rightarrow B⋮21\)

 

Đức Phan
Xem chi tiết
Lê Thành Vinh
21 tháng 2 2017 lúc 21:52

Bấm máy tính ra xấp xỉ 0,55 thì lớn hơn 0,5 chứ sao.Mình chỉ cm được lớn hơn 3 phần 7 thôi, mà 1 phần 2 bằng 3,5 phần 7

Lê Ánh Huyền
Xem chi tiết
Phạm Nguyễn Tất Đạt
3 tháng 4 2016 lúc 17:53

gọi A=1/21+1/22+1/23+...+1/40

chia A thành 2 nhóm A1 và A2( A1+A2=A)

ta có A1=1/21+1/22+1/23+...+1/30>1/30+1/30+1/30+...+1/30(có 10 phân số 1/30)

A1>10/30=1/3(1)

ta có A2=1/31+1/32+1/33+...+1/40>1/40+1/40+1/40+...+1/40(có 10 phân số 1/40)

A2>10/40=1/4(2)

từ (1)và (2) suy ra

A1+A2>1/3+1/4

A>7/12(3)

ta có A1=1/21+1/22+1/23+...+1/20<1/20+1/20+1/20+...+1/20(có 10 phân số 1/20)

A1<10/20=1/2(4)

ta có A2=1/31+1/32+1/33+...+1/40<1/30+1/30+1/30+...+1/30(có 10 phân số 1/30)

A2<10/30=1/3(5)

từ (4)và (5) suy ra

A1+A2<1/2+1/3

A<5/6(6)

từ (3),(6) suy ra 7/12<1/21+1/22+1/23+...+1/40<5/6

Phạm Nguyễn Tất Đạt
3 tháng 4 2016 lúc 17:55

cái A1+1/21+1/22+1/23+1/24+1/25+...+1/30<1/20+1/20+1/20+1/20+...+1/20 nhé

Dào Minh Phúc
Xem chi tiết
Gọi Gì Cũng Được
23 tháng 3 2023 lúc 21:24

1/20 .21 + 1/22 .23 + .... + 1/79 .80

= 1/20 - 1/21  + 1/22 - 1/23 + .......... + 1/79 - 1/80

= 1/20 - 1/80

= 3/80

Ta thấy : 3/80 < 1 

=> 1/20 . 21 + 1/22 . 23 + ........ + 1/79 . 80 <1 (ĐPCM)

Nguyễn Việt Hà
Xem chi tiết
Ng Ngọc
14 tháng 8 2023 lúc 22:20

1.

a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(2A=2+2^2+2^3+....+2^{2008}\)

b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)

\(=2^{2008}-1\) (bạn xem lại đề)

 

2.

\(A=1+3+3^1+3^2+...+3^7\)

a. \(2A=2+2.3+2.3^2+...+2.3^7\)

b.\(3A=3+3^2+3^3+...+3^8\)

\(2A=3^8-1\)

\(=>A=\dfrac{2^8-1}{2}\)

 

3

.\(B=1+3+3^2+..+3^{2006}\)

a. \(3B=3+3^2+3^3+...+3^{2007}\)

b. \(3B-B=2^{2007}-1\)

\(B=\dfrac{2^{2007}-1}{2}\)

 

4.

Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)

a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)

b.\(4C-C=4^7-1\)

\(C=\dfrac{4^7-1}{3}\)

 

5.

\(S=1+2+2^2+2^3+...+2^{2017}\)

\(2S=2+2^2+2^3+2^4+...+2^{2018}\)

\(S=2^{2018}-1\)

Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 22:09

4:

a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6

=>4*C=4+4^2+...+4^7

b: 4*C=4+4^2+...+4^7

C=1+4+...+4^6

=>3C=4^7-1

=>\(C=\dfrac{4^7-1}{3}\)

5:

2S=2+2^2+2^3+...+2^2018

=>2S-S=2^2018-1

=>S=2^2018-1

Bảo Vũ Duy Gia
Xem chi tiết
Nguyễn Huy Phúc
12 tháng 6 2021 lúc 12:38

                                    Giải

Đặt A=(1/21+1/22+...+1/40)+(1/41+...+1/80)

→A>20/40+40/80

A=(1/21+1/22+...+1/40)+(1/41+...+1/80)

→A<20/20+40/40

→A<2 (2)

Từ (1),(2)→1<A<2

→A không là số tự nhiên

Nguyễn Huy Phúc
11 tháng 7 2021 lúc 17:35

Đặt A=(1/21+1/22+...+1/40)+(1/41+...+1/80)

→A>20/40+40/80

A=(1/21+1/22+...+1/40)+(1/41+...+1/80)

→A<20/20+40/40

→A<2 (2)

Từ (1),(2)→1<A<2

→A không là số tự nhiên

Trì Ngâm
Xem chi tiết
santa
21 tháng 8 2021 lúc 21:21

chứng minh 1/21 + 1/22 + 1/23 + 1/24 +...........+ 1/80 không phải số tự nhiên giải được cho 5 sao và câu trả lời hay nhất - câu hỏi 1862868

bạn tham khảo lời giải nha

Phùng Minh Thịnh
Xem chi tiết
Hà Trần
Xem chi tiết
Nguyễn Huyền Trâm
25 tháng 5 2020 lúc 13:15

a,\( \dfrac{1}{4}+ \dfrac{1}{16}+ \dfrac{1}{36}+ \dfrac{1}{64}+ \dfrac{1}{100}+ \dfrac{1}{144}+ \dfrac{1}{196}\)

= \( \dfrac{1}{4}+ \dfrac{1}{16}+ \dfrac{1}{36}+...+ \dfrac{1}{196} < \dfrac{1}{2^2-1}+ \dfrac{1}{4^2-1}+ \dfrac{1}{6^2-1}+...+ \dfrac{1}{14^2-1}\)

= \( \dfrac{1}{1.3}+ \dfrac{1}{3.5}+ \dfrac{1}{5.7}+...+ \dfrac{1}{13.15}\)

= \( \dfrac{1}{2}(1- \dfrac{1}{3}+ \dfrac{1}{3}- \dfrac{1}{5}+ \dfrac{1}{5}- \dfrac{1}{7}+ \dfrac{1}{7}-...- \dfrac{1}{13}+ \dfrac{1}{13}- \dfrac{1}{15})\)

= \( \dfrac{1}{2}(1- \dfrac{1}{15})< \dfrac{1}{2}\)

Vậy \( \dfrac{1}{4}+ \dfrac{1}{16}+ \dfrac{1}{36}+ \dfrac{1}{64}+ \dfrac{1}{100}+ \dfrac{1}{144}+ \dfrac{1}{196}\) \(<\dfrac{1}{2} \)

Nguyễn Huyền Trâm
25 tháng 5 2020 lúc 13:25

b,A= \(\dfrac{11}{15}<\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+...+\dfrac{1}{59}+\dfrac{1}{60}<\dfrac{3}{2}\)

\(=(\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+....+\dfrac{1}{40})+(\dfrac{1}{41}+...+1...\)
\(=(\dfrac{20}{20.21}+\dfrac{21}{21.22}+...+\dfrac{39}{39.40})+(40/...\)
\(20(\dfrac{1}{20.21}+\dfrac{1}{21.22}+...\dfrac{1}{39.40})+40(\dfrac{1}{40}...\)
\(20(\dfrac{1}{20}-\dfrac{1}{40})+40(\dfrac{1}{40}-\dfrac{1}{60})>\dfrac{11}{15}\)
Lại có \(A<40(\dfrac{1}{20.21}+...\dfrac{1}{39.40})+60(\dfrac{1}{40.41}+...+...\)
\(=40(\dfrac{1}{20}-\dfrac{1}{40})+60(\dfrac{1}{40}-\dfrac{1}{60})<\dfrac{3}{2}\)

=> \(\dfrac{11}{15}<\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+...+\dfrac{1}{59}+\dfrac{1}{60}<\dfrac{3}{2}\)

👁💧👄💧👁
Xem chi tiết
👁💧👄💧👁
21 tháng 4 2019 lúc 21:26

Y Ribi Nkok Ngok Lê Nguyễn Ngọc Nhi Lê Anh Duy Nguyễn Thị Diễm Quỳnh trần thị diệu linh kudo shinichi Nguyen Giang Thủy Tiên Nguyễn Việt Lâm