Y Ribi Nkok Ngok Lê Nguyễn Ngọc Nhi Lê Anh Duy Nguyễn Thị Diễm Quỳnh trần thị diệu linh kudo shinichi Nguyen Giang Thủy Tiên Nguyễn Việt Lâm
Y Ribi Nkok Ngok Lê Nguyễn Ngọc Nhi Lê Anh Duy Nguyễn Thị Diễm Quỳnh trần thị diệu linh kudo shinichi Nguyen Giang Thủy Tiên Nguyễn Việt Lâm
Bài 22, Cho \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\)
\(B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)
1/ So sánh A và B, A2 và A.B
2/ Chứng minh A<\(\frac{1}{10}\)
Bài 21, Cho \(A=\frac{1\cdot3\cdot5\cdot...\cdot4095}{2\cdot4\cdot6\cdot...\cdot4096}\)
\(B=\frac{2\cdot4\cdot6\cdot...\cdot4096}{1\cdot3\cdot5\cdot...\cdot4097}\)
1/ So sánh A2 và A.B
2/ Chứng minh A<\(\frac{1}{64}\)
Bài 21, Cho \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{2499}{2500}\)Chứng minh A<\(\frac{1}{49}\)
Bài 22, Cho \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\)
\(B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)
\(C=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{98}{99}\)
1/ So sánh A, B, C
2/Chứng minh \(A\cdot C< A^2< \frac{1}{10}\)
3/Chứng minh \(\frac{1}{15}< A< \frac{1}{10}\)
Bài 1:So sánh Avà B biết rằng:
A=\(\frac{10^{15}+1}{10^{16}+1};\) B=\(\frac{10^{16}+1}{10^{17}+1}\)
A=\(\frac{3}{8^3}+\frac{7}{8^4}\); B=\(\frac{7}{8^3}+\frac{3}{8^4}\)
A=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+.......+\frac{1}{19}+\frac{1}{20};\) B=\(\frac{1}{2}\)
Bài 2:Dạng tính tổng đặc biệt:
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{99\cdot100}\)
\(B=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+.....+\frac{2}{99\cdot101}\)
\(C=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+......+\frac{3^2}{340}\)
\(D=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+......+\frac{1}{3^8}\)
\(E=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{99}\right)\)
Bài 3:Dạng chứng minh:
\(A=1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{99}.\)Chứng minh rằng A chia hết cho 100
A=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\).Chứng minh rằng A>\(\frac{4}{3}\)
Bài 1: Chứng minh rằng: \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Bài 2: Cho \(n\in N;n>1\). Chứng minh rằng: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{\left(n-1\right)^2}+\frac{1}{n^2}\notin N\)
Chứng Minh Rằng
a) \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+.....+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Bài 1:
\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}.\)Chứng minh rằng \(A⋮100\)
\(A=\frac{1}{11}+\frac{1}{12}+\frac{2}{13}+...+\frac{1}{70}.\)Chứng minh rằng \(A>\frac{4}{3}\)
Bài 2:Tính \(\frac{A}{B}\)
\(A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\) ;\(B=\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{9.10}\) ;\(B=\frac{1}{6.10}+\frac{1}{7.9}+\frac{1}{8.8}+\frac{1}{9.7}+\frac{1}{10.6}\)
giúp mk với các nhà toán thông thái à!
Chứng minh rằng: a)\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b)\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Nhanh lên nhé! Mk đang cần gấp.
Cho M =\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\) .Hãy chứng minh M<\(\frac{3}{16}\)
Câu 2 Chứng minh rằng :
\(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}< \frac{1}{50}\)
Chứng minh rằng:
1)B=\(\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...+\frac{3^{98}+1}{3^{98}}< 100\)
2)C=\(\frac{5}{5.8.11}+\frac{5}{8.11.14}+...+\frac{5}{302.305.308}\)<\(\frac{1}{48}\)
3)D=\(\frac{11}{9}+\frac{18}{16}+\frac{27}{25}+...+\frac{1766}{1764}\)
\(40\frac{20}{43}< D< 40\frac{20}{21}\)
chứng minh rằng
\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\) bé hơn \(\frac{1}{4}\)