Ta có : \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)
Đặt \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}=A\)
=> \(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
=> \(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
=> \(2A=1-\frac{1}{3^{100}}\)
=> \(A=\frac{1-\frac{1}{3^{100}}}{2}=\frac{1}{2}\)
Ta thấy \(\frac{1}{2}>\frac{1}{4}\)
Vậy nên khẳng định trên vô lý .