Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
fan FA
Xem chi tiết
Cao Tường Vi
Xem chi tiết
Cao Tường Vi
6 tháng 2 2020 lúc 14:11

một đường tròn

Khách vãng lai đã xóa
Min Suga
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 11 2021 lúc 20:04

Qua A dựng đường thẳng d song song BC, trên d lấy điểm I sao cho \(\overrightarrow{IA}=\dfrac{2}{3}\overrightarrow{BC}\)

\(\Rightarrow3\overrightarrow{IA}=2\overrightarrow{BC}\Rightarrow3\overrightarrow{IA}+2\overrightarrow{CB}=\overrightarrow{0}\)

Ta có:

\(\left|3\overrightarrow{MA}+2\overrightarrow{MB}-2\overrightarrow{MC}\right|=\left|\overrightarrow{MB}-\overrightarrow{MC}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MA}+2\left(\overrightarrow{MB}+\overrightarrow{CM}\right)\right|=\left|\overrightarrow{MB}+\overrightarrow{CM}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MA}+2\overrightarrow{CB}\right|=\left|\overrightarrow{CB}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MI}+3\overrightarrow{IA}+2\overrightarrow{CB}\right|=\left|\overrightarrow{CB}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MI}\right|=\left|\overrightarrow{CB}\right|\)

\(\Leftrightarrow MI=\dfrac{1}{3}BC\)

Tập hợp M là đường tròn tâm I bán kính \(\dfrac{BC}{3}\)

Mạc Hy
Xem chi tiết
Nguyễn Tuấn Hào
Xem chi tiết
tran duc huy
Xem chi tiết
Hồng Phúc
6 tháng 11 2020 lúc 11:24

d, Lấy P, Q sao cho \(4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{0};2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}=\overrightarrow{0}\)

Ta có \(\left|4\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|4\text{ }\overrightarrow{MP}+4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}\right|=\left|4\overrightarrow{MP}\right|=4MP\)

\(\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|=\text{ }\left|2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}\right|=0\)

\(\Rightarrow4MP=0\Rightarrow M\equiv P\)

Khách vãng lai đã xóa
Hồng Phúc
6 tháng 11 2020 lúc 11:10

Gọi G là trọng tâm tam giác, I là trung điểm BC, N là trung điểm của AC

a, Ta có \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)

\(\frac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=\frac{3}{2}\left|2\overrightarrow{MI}\right|=3MI\)

\(\Rightarrow MG=MI\Rightarrow M\) thuộc đường trung trực của BC

b, \(\left|\overrightarrow{MA}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MN}\right|=2MN\)

\(\left|\overrightarrow{MA}-\overrightarrow{MB}\right|=\left|\overrightarrow{BA}\right|=BA\)

\(\Rightarrow2MN=BA\Rightarrow M\in\left(N;\frac{BA}{2}\right)\)

Khách vãng lai đã xóa
Hồng Phúc
6 tháng 11 2020 lúc 11:19

c, Lấy điểm E thỏa mãn \(2\overrightarrow{EA}+\overrightarrow{EB}=\overrightarrow{0}\), F thỏa mãn \(4\overrightarrow{FB}-\overrightarrow{FC}=\overrightarrow{0}\)

Ta có \(\left|2\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|2\overrightarrow{ME}+2\overrightarrow{EA}+\overrightarrow{ME}+\overrightarrow{EB}\right|=\left|3\overrightarrow{ME}\right|=3ME\)

\(\left|4\overrightarrow{MB}-\overrightarrow{MC}\right|=\left|4\overrightarrow{MF}+4\overrightarrow{FB}-\overrightarrow{MF}-\overrightarrow{FC}\right|=\left|3\overrightarrow{MF}\right|=3MF\)

\(\Rightarrow ME=MF\Rightarrow M\) thuộc đường trung trực EF

Khách vãng lai đã xóa
Khoẻ Nguyển Minh
Xem chi tiết
Phạm Thị Phương
Xem chi tiết
Akai Haruma
14 tháng 8 2021 lúc 1:47

Lời giải:

a.

\(|\overrightarrow{MC}|=|\overrightarrow{MA}-\overrightarrow{MB}|=|\overrightarrow{BA|}\)

Tập hợp điểm $M$ thuộc đường tròn tâm $C$ đường bán kính $AB$

b. Gọi $I$ là trung điểm $AB$. Khi đó:

\(|\overrightarrow{MA}+\overrightarrow{MB}|=|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}|\)

\(=|2\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{IB}|=|2\overrightarrow{MI}|=0\)

\(\Leftrightarrow |\overrightarrow{MI}|=0\Leftrightarrow M\equiv I\)

Vậy điểm $M$ là trung điểm của $AB$

 

 

Akai Haruma
14 tháng 8 2021 lúc 1:52

c.

Trên tia đối của tia $CA$ lấy $K$ sao cho $KC=\frac{1}{3}CA$

\(|\overrightarrow{MA}|=2|\overrightarrow{MC}|\Leftrightarrow |\overrightarrow{MK}+\overrightarrow{KA}|=2|\overrightarrow{MK}+\overrightarrow{KC}|\)

\(\Leftrightarrow |\overrightarrow{MK}+4\overrightarrow{KC}|=|2\overrightarrow{MK}+2\overrightarrow{KC}|\)

\(\Leftrightarrow (\overrightarrow{MK}+4\overrightarrow{KC})^2=(2\overrightarrow{MK}+2\overrightarrow{KC})^2\)

\(\Leftrightarrow MK^2+16KC^2=4MK^2+4KC^2\)

\(\Leftrightarrow 12KC^2=3MK^2\Leftrightarrow MK=2KC=\frac{2}{3}AC\)

Vậy $M$ thuộc đường tròn tâm $K$ bán kính $\frac{2}{3}AC$

 

Akai Haruma
14 tháng 8 2021 lúc 16:26

d.
Gọi $I$ là trung điểm $BC$

\(|\overrightarrow{MB}+\overrightarrow{MC}|=|\overrightarrow{MB}-\overrightarrow{MC}|\)

\(\Leftrightarrow |\overrightarrow{MI}+\overrightarrow{IB}+\overrightarrow{MI}+\overrightarrow{IC}|=|\overrightarrow{CB}|\)

\(\Leftrightarrow |2\overrightarrow{MI}|=|\overrightarrow{CB}|\Leftrightarrow |\overrightarrow{MI}|=\frac{|\overrightarrow{CB}|}{2}\)

Vậy điểm $M$ thuộc đường tròn tâm $I$ bán kính $\frac{BC}{2}$
 

Lê Mai
Xem chi tiết