Chương 2: TÍCH VÔ HƯỚNG CỦA HAI VECTƠ VÀ ỨNG DỤNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Min Suga

Cho ΔABC . Tìm tập hợp điểm M thõa mãn \(\left|3\overrightarrow{MA}+2\overrightarrow{MB}-2\overrightarrow{MC}\right|=\left|\overrightarrow{MB}-\overrightarrow{MC}\right|\)

Nguyễn Việt Lâm
26 tháng 11 2021 lúc 20:04

Qua A dựng đường thẳng d song song BC, trên d lấy điểm I sao cho \(\overrightarrow{IA}=\dfrac{2}{3}\overrightarrow{BC}\)

\(\Rightarrow3\overrightarrow{IA}=2\overrightarrow{BC}\Rightarrow3\overrightarrow{IA}+2\overrightarrow{CB}=\overrightarrow{0}\)

Ta có:

\(\left|3\overrightarrow{MA}+2\overrightarrow{MB}-2\overrightarrow{MC}\right|=\left|\overrightarrow{MB}-\overrightarrow{MC}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MA}+2\left(\overrightarrow{MB}+\overrightarrow{CM}\right)\right|=\left|\overrightarrow{MB}+\overrightarrow{CM}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MA}+2\overrightarrow{CB}\right|=\left|\overrightarrow{CB}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MI}+3\overrightarrow{IA}+2\overrightarrow{CB}\right|=\left|\overrightarrow{CB}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MI}\right|=\left|\overrightarrow{CB}\right|\)

\(\Leftrightarrow MI=\dfrac{1}{3}BC\)

Tập hợp M là đường tròn tâm I bán kính \(\dfrac{BC}{3}\)


Các câu hỏi tương tự
Min Suga
Xem chi tiết
Min Suga
Xem chi tiết
Min Suga
Xem chi tiết
Min Suga
Xem chi tiết
Min Suga
Xem chi tiết
Trần MInh Hiển
Xem chi tiết
Trần MInh Hiển
Xem chi tiết
Anh Quỳnh
Xem chi tiết
Viên Lưu
Xem chi tiết