Chương I: VÉC TƠ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tran duc huy

Cho ΔABC . Tìm tập hợp điểm M thoả mãn :

a, \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\frac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)

b, \(\left|\overrightarrow{MA}+\overrightarrow{MC}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\)

c,\(\left|\overrightarrow{2MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{4MB}-\overrightarrow{MC}\right|\)

d, \(\left|\overrightarrow{4MA}-\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{2MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)

Hồng Phúc
6 tháng 11 2020 lúc 11:24

d, Lấy P, Q sao cho \(4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{0};2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}=\overrightarrow{0}\)

Ta có \(\left|4\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|4\text{ }\overrightarrow{MP}+4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}\right|=\left|4\overrightarrow{MP}\right|=4MP\)

\(\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|=\text{ }\left|2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}\right|=0\)

\(\Rightarrow4MP=0\Rightarrow M\equiv P\)

Khách vãng lai đã xóa
Hồng Phúc
6 tháng 11 2020 lúc 11:10

Gọi G là trọng tâm tam giác, I là trung điểm BC, N là trung điểm của AC

a, Ta có \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)

\(\frac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=\frac{3}{2}\left|2\overrightarrow{MI}\right|=3MI\)

\(\Rightarrow MG=MI\Rightarrow M\) thuộc đường trung trực của BC

b, \(\left|\overrightarrow{MA}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MN}\right|=2MN\)

\(\left|\overrightarrow{MA}-\overrightarrow{MB}\right|=\left|\overrightarrow{BA}\right|=BA\)

\(\Rightarrow2MN=BA\Rightarrow M\in\left(N;\frac{BA}{2}\right)\)

Khách vãng lai đã xóa
Hồng Phúc
6 tháng 11 2020 lúc 11:19

c, Lấy điểm E thỏa mãn \(2\overrightarrow{EA}+\overrightarrow{EB}=\overrightarrow{0}\), F thỏa mãn \(4\overrightarrow{FB}-\overrightarrow{FC}=\overrightarrow{0}\)

Ta có \(\left|2\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|2\overrightarrow{ME}+2\overrightarrow{EA}+\overrightarrow{ME}+\overrightarrow{EB}\right|=\left|3\overrightarrow{ME}\right|=3ME\)

\(\left|4\overrightarrow{MB}-\overrightarrow{MC}\right|=\left|4\overrightarrow{MF}+4\overrightarrow{FB}-\overrightarrow{MF}-\overrightarrow{FC}\right|=\left|3\overrightarrow{MF}\right|=3MF\)

\(\Rightarrow ME=MF\Rightarrow M\) thuộc đường trung trực EF

Khách vãng lai đã xóa

Các câu hỏi tương tự
Liana Phan
Xem chi tiết
Queen Material
Xem chi tiết
Nguyễn Thảo Hân
Xem chi tiết
Tuyết Phạm
Xem chi tiết
Thanh Trúc
Xem chi tiết
oooloo
Xem chi tiết
Không Biết Gì
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Julian Edward
Xem chi tiết