Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ánh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 8 2018 lúc 9:12

Đỗ Phương Nam
Xem chi tiết
Trần Minh Ngọc
6 tháng 4 2016 lúc 12:59

Giả sử tọa độ M(x;0). Khi đó \(\overrightarrow{MA}=\left(1-x;2\right);\overrightarrow{MB}=\left(4-x;3\right)\)

Theo giả thiết ta có \(\overrightarrow{MA}.\overrightarrow{MB}=MA.MB.\cos45^0\)

\(\Leftrightarrow\left(1-x\right)\left(4-x\right)+6=\sqrt{\left(1-x\right)^2+4}.\sqrt{\left(4-x\right)^2+9}.\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow x^2-5x+10=\sqrt{x^2-2x+5}.\sqrt{x^2-8x+25}.\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow2\left(x^2-5x+10\right)^2=\left(x^2-5x+10\right)\left(x^2-8x+25\right)\) (do \(x^2-5x+10>0\))

\(\Leftrightarrow x^4-10x^3+44x^2-110x+75=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)\left(x^2-4x+15\right)=0\)

\(\Leftrightarrow x=1;x=5\)

Vậy ta có 2 điểm cần tìm là M(1;0) hoặc M(5;0)

Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 12 2020 lúc 20:48

Gọi \(M\left(0;m\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;m+2\right)\\\overrightarrow{AB}=\left(-5;7\right)\end{matrix}\right.\)

3 điểm M;A;B thẳng hàng khi:

\(\dfrac{-1}{-5}=\dfrac{m+2}{7}\Rightarrow m=-\dfrac{3}{5}\)

\(\Rightarrow M\left(0;-\dfrac{3}{5}\right)\)

Nhung Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2022 lúc 22:56

M thuộc Oy nên M(0;y)

\(MA=2\)

=>\(\sqrt{\left(-3-0\right)^2+\left(1-y\right)^2}=2\)

=>(y-1)^2+9=4

=>(y-1)^2=-5(loại)

=>

Sơn Bạch
Xem chi tiết
Aigu
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 2 2023 lúc 8:34

Đâu có m đâu bạn!

Aigu
22 tháng 2 2023 lúc 8:43

7 đổi thành m nha

Phạm Tất Đạt
Xem chi tiết
Phạm Minh Quang
28 tháng 3 2021 lúc 9:44

Phương trình đường thẳng BC: a(x-2) + b(y-2)=0

cos(BA;BC)=cos\(45^0\)=\(\dfrac{1}{\sqrt{2}}=\dfrac{\left|a-b\right|}{\sqrt{2\left(a^2+b^2\right)}}\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\). Vì a,b không đồng thời bằng 0 nên suy ra \(\left[{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

Vì tọa độ C có hoành độ x lớn hơn 2 nên phương trình đường thẳng BC là y=2.

Ta có:\(S_{ABC}=\dfrac{1}{2}AB.BC.sin45^0\)\(\Leftrightarrow2=\dfrac{1}{2}\sqrt{8}\sqrt{\left(x_C-2\right)^2}.\dfrac{\sqrt{2}}{2}\Leftrightarrow x_C=4\)

Vậy tọa độ C(4;2)

Aigu
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 2 2023 lúc 8:48

vecto AB=(4;4)

vecto AC=(m-2;8)

Để A,B,C thẳng hàng thì 4/m-2=4/8

=>m-2=8

=>m=10