tìm giá trị nhỏ nhất của biểu thức
\(3x^2-4xy+2y^2-3x+2007\)
Tìm giá trị lớn nhất, nhỏ nhất của biểu thức:
\(A=3x^2-4xy+2y^2-3x+2019\).
\(A=2\left(x^2-2xy+y^2\right)+\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{8067}{4}\)
\(A=2\left(x-y\right)^2+\left(x-\dfrac{3}{2}\right)^2+\dfrac{8067}{4}\ge\dfrac{8067}{4}\)
\(A_{min}=\dfrac{8067}{4}\) khi \(x=y=\dfrac{3}{2}\)
tìm gia trị nhỏ nhất của biểu thức
A= \(3x^2-4xy+2y^2-3x+2007\)
Lời giải:
Ta có \(A=3x^2-4xy+2y^2-3x+2007\)
\(\Leftrightarrow A=(x^2-3x+\frac{9}{4})+2(x^2-2xy+y^2)+\frac{8019}{4}\)
\(\Leftrightarrow A=(x-\frac{3}{2})^2+2(x-y)^2+\frac{8019}{4}\)
Thấy \((x-\frac{3}{2})^2,(x-y)^2\geq 0\) nên \(A\geq \frac{8019}{4}\)
Vậy \(A_{\min}=\frac{8019}{4}\Leftrightarrow x=y=\frac{3}{2}\)
bài 1:tìm giá trị nhỏ nhất của biểu thức sau:
a)A=2x2+4x-9
b)B=3x2-4xy+2y2-3x+2007
cho x,y là hai số thực tùy ý , tìm giá trị nhỏ nhất của biểu thức
p=3x^2+3y^2+4xy+2x-2y+2020
Bạn có ghi nhầm đề không vậy?
tìm giá trị nhỏ nhất của biểu thức :
a, A=2x^2+y^2+2xy-6x-2y+8
b, B=3x^2+4y^2-4xy+6x-4y+11
Bài 1:tìm giá trị nhỏ nhất của biểu thức:
a)A=2x2+4x-9
b)B=3x2-4xy+2y2-3x+2007
a: =2(x^2+2x+9/2)
=2(x^2+2x+1+7/2)
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: \(=2\left(\dfrac{3}{2}x^2-2xy+y^2-\dfrac{3}{2}x+\dfrac{2007}{2}\right)\)
\(=2\left(x^2-2xy+y^2+\dfrac{1}{2}x^2-\dfrac{3}{2}x+\dfrac{2007}{2}\right)\)
\(=2\left(x-y\right)^2+x^2-3x+2007\)
\(=2\left(x-y\right)^2+\left(x-\dfrac{3}{2}\right)^2+2004.75>=2004.75\)
Dấu = xảy ra khi x=y=3/2
tìm giá trị lớn nhất của biểu thức sau
a) a= -x^2+2x
b) B=(2-3x)(3+2x)
c) C=4xy-4x-2y-4x^2-2y^2-3
a) \(A=-x^2+2x=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1\le1\)
\(maxA=1\Leftrightarrow x=1\)
b) \(B=\left(2-3x\right)\left(3+2x\right)=-6x^2-5x+6=-6\left(x^2+\dfrac{5}{6}x+\dfrac{25}{144}\right)+\dfrac{169}{24}=-6\left(x+\dfrac{5}{12}\right)^2+\dfrac{169}{24}\le\dfrac{169}{24}\)
\(minB=\dfrac{169}{24}\Leftrightarrow x=-\dfrac{5}{12}\)
c) \(C=4xy-4x-2y-4x^2-2y^2-3=-\left[4x^2-4x\left(y-1\right)+\left(y-1\right)^2\right]+\left(y^2-4y+4\right)-6=\left(2x-y+1\right)^2+\left(y-2\right)^2-6\le-6\)
\(minC=-6\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=2\end{matrix}\right.\)
a, Tìm giá trị lớn nhất của biểu thức: A=4x-x^2+3
b. Tìm giá trị nhỏ nhất của biểu thức:B=4x^2-12x+15
c,Tìm giá trị nhỏ nhất của biểu thức:C=4x^2+2y^2-4xy-4y+1
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
A= (x2+4y2+9/4+4xy+3x+3y) + (y2+5x+95/4)
= (x+2y+3/2)2 + (y+5/2)2 + 15
=> A min = 15
Dấu "=" xảy ra khi y=-5/2 ; x=7/2
\(A=x^2+5y^2+4xy+3x+8y+26\)
\(=\left(x^2+4xy+4y^2\right)+\left(3x+6y\right)+\frac{9}{4}+\left(y^2+2y+1\right)+\frac{91}{4}\)
\(=\left(x+2y\right)^2+3\left(x+2y\right)+\frac{9}{4}+\left(y+1\right)^2+\frac{91}{4}\)
\(=\left(x+2y+\frac{3}{2}\right)^2+\left(y+1\right)^2+\frac{91}{4}\ge\frac{91}{4}\forall x,y\)
Dấu"="xảy ra khi \(\orbr{\begin{cases}x+2y+\frac{3}{2}=0\\y+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x+2y=-\frac{3}{2}\\y=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}}\)
Vậy .....