Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Cảnh Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 6 2023 lúc 9:45

a: BC=căn 6^2+8^2=10cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=10/7

=>BD=30/7cm; CD=40/7cm

b: AH=6*8/10=4,8cm

Nguyễn Minh Hằng
Xem chi tiết
Kiều Vũ Linh
25 tháng 4 2023 lúc 8:05

loading...  

a) Xét hai tam giác vuông: ∆ABC và ∆HBA có:

∠B chung

⇒ ∆ABC ∽ ∆HBA (g-g)

b) ∆ABC vuông tại A (gt)

⇒ BC² = AB² + AC² (Pytago)

= 6² + 8²

= 100

⇒ BC = 10

Do ∆ABC ∽ ∆HBA (cmt)

⇒ AC/AH = BC/AB

⇒ AH = AB.AC/BC

= 6.8/10

= 4,8 (cm)

∆ABH vuông tại H

⇒ AB² = AH² + BH² (Pytago)

⇒ BH² = AB² - AH²

= 6² - (4,8)²

= 12,96

⇒ BH = 3,6 (cm)

Chiến Hoàng
25 tháng 4 2023 lúc 8:02

 

a) Ta có:

 

- Góc A của tam giác ABC là góc vuông, nên ta có thể tính được độ dài đoạn thẳng AH bằng cách sử dụng định lí Pythagoras: AH = sqrt(AB^2 + AC^2) = sqrt(6^2 + 8^2) = 10.

 

- Góc A của tam giác ABC cũng là góc giữa đường cao AH và cạnh huyền BC, nên ta có thể tính được tỉ số giữa độ dài đoạn thẳng AH và độ dài cạnh huyền BC: AH/BC = AC/AB = 8/6 = 4/3.

 

- Từ tỉ số này, ta có thể suy ra rằng tam giác ABC đồng dạng với tam giác HBA (vì cả hai tam giác có cùng một góc và tỉ số giữa các cạnh tương ứng bằng nhau).

 

b) Để tính độ dài các cạnh BC, AH, BH, ta có thể sử dụng các công thức sau:

 

- Độ dài cạnh BC: BC = AB/AC * AH = 6/8 * 10 = 15/2 = 7.5.

 

- Độ dài đoạn thẳng BH: BH = sqrt(AH^2 - AB^2) = sqrt(10^2 - 6^2) = 8.

 

- Độ dài đoạn thẳng AH đã được tính ở trên: AH = 10.

 

Vậy độ dài các cạnh BC, AH, BH lần lượt là 7.5cm, 10cm, 8cm.

Nguyễn Thảo Hiền Tài
Xem chi tiết
Nguyễn Hương Trà
6 tháng 3 2017 lúc 20:52

Một con bò nặng bằng 4/7 khối lượng của nó và 9 yến. Vậy con bò nặng bao nhiêu kg?

Nguyễn Thảo Hiền Tài
Xem chi tiết
Lê Ánh Hằng
30 tháng 10 2016 lúc 17:09

B A C D 6cm 10cm 8cm

Diện tích hình tam giác ABC là : 6 x 8 : 2 = 24 ( cm2 )

Vì đường cao vuông góc với đáy , mà đây là tam giác vuông có đường cao hạ từ đỉnh A nên đường cao sẽ cắt BC tại D , chia BC thành 2 phần bằng nhau . Vậy diện tích 1 phần là : 24 : 2 = 12 ( cm2 )

Độ dài đường DC là : 10 : 2 = 5 ( cm )

Độ dài đường cao hạ từ A xuống đáy là : 12 x 2 : 5 = 4,8 ( cm )

Đáp số : 4,8cm .

Nguyễn Trần Nhật Khang
Xem chi tiết
Thanh Hoàng Thanh
8 tháng 1 2022 lúc 17:19

a) \(\Delta ABC\) vuông tại A (gt).

\(\Rightarrow S_{\Delta ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}6.8=24\left(cm^2\right).\)

b) Xét \(\Delta ABC\) vuông tại A:

\(BC^2=AB^2+AC^2.\Rightarrow BC^2=6^2+8^2.\Leftrightarrow BC^2=36+64=100.\)

\(\Rightarrow BC=10\left(cm\right).\)

c) Ta có: \(S_{\Delta ABC}=\dfrac{1}{2}AH.BC.\)

              \(S_{\Delta ABC}=\dfrac{1}{2}AB.AC.\)

\(\Rightarrow\dfrac{1}{2}AH.BC=\dfrac{1}{2}AB.AC.\)

\(\Rightarrow\dfrac{1}{2}AH.10=24.\Leftrightarrow AH=4,8\left(cm\right).\)

 

Nguyễn Trần Nhật Khang
Xem chi tiết
Hoàng Phạm Gia Khiêm
8 tháng 1 2022 lúc 17:48

a)Diện tích tam giác vuông ABC là:

S=1/2* AB *AC = 1/2 * 6 * 8= 24 (cm2)

b)Độ dài cạnh BC là:

theo định lý pytago về tam giác vuông, ta có

BC2= AB2+AC2= 62 + 82 = 100 cm => BC = \(\sqrt{100}\) = 10cm

c) Độ dài đường cao AH

AC2= BC*HC => HC = \(\dfrac{AC^2}{BC}\) = 6,4 cm

BH = BC - HC = 10 - 6,4 = 3,6 cm

AH2 = BH*HC = 6,4 * 3,6 = \(\dfrac{576}{25}\) => AH = \(\sqrt{\dfrac{576}{25}}=4,8cm\)

 

 

 

Nguyễn Trần Nhật Khang
Xem chi tiết
Đỗ Tuệ Lâm
8 tháng 1 2022 lúc 17:19

a,

\(S_{ABC}=\dfrac{AB.AC}{2}=\dfrac{6.8}{2}=24cm^2\)

b. \(BC^2=AB^2+AC^2\Rightarrow BC=10cm\)

Nguyễn Lê Phước Thịnh
8 tháng 1 2022 lúc 20:14

c: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

hay AH=4,8cm

Nguyễn Trần Nhật Khang
Xem chi tiết
Giỏi Toán 8
16 tháng 1 2022 lúc 10:06

a)SABC=6.8=48(cm2)

b)Áp dụng định lý Py-ta-go trong tam giác vuông ABC có: BC=10cm

c)AB.AC=BC.AH =>AH=(AB.AC)/BC=4,8cm

Hồng Ân 9/5
Xem chi tiết
Lấp La Lấp Lánh
8 tháng 10 2021 lúc 22:10

Xét tam giác ABC vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Áp dụng HTL:

\(AH.BC=AB.AC\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)