Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
manh nguyenvan
Xem chi tiết
Người Vô Danh
25 tháng 9 2021 lúc 14:57

a) x2 +x +1 = x2 + x + 1/4 + 3/4 =(x+1/2)2 + 3/4

=> GTNN a) =3/4 khi x=-1/2

b) 4x2 +4x -5 = 4x2 + 4x +1 -6 = (2x+1)2-6

=> GTNN b) = -6 khi x=-1/2

c) (x-3)(x+5) +4 = x2+2x -11 = x2+2x +1-12=(x+1)2-12

GTNN c) =12 khi x=-1 

d) x2-4x+y2-8y+6=x2-4x+4+y2-8y+16-14=(x-2)2+(y-4)2-14

GTNN d) =-14 khi x=2 , y=4

Nguyễn Hoàng Minh
25 tháng 9 2021 lúc 15:00

\(a,=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu \("="\Leftrightarrow x=-\dfrac{1}{2}\)

\(b,=\left(4x^2+4x+1\right)-6=\left(2x+1\right)^2-6\ge-6\)

Dấu \("="\Leftrightarrow x=-\dfrac{1}{2}\)

\(c,=x^2+2x-15+4=\left(x+1\right)^2-12\ge-12\)

Dấu \("="\Leftrightarrow x=-1\)

\(d,=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

THẮNG SANG CHẢNH
Xem chi tiết
Buddy
18 tháng 2 2021 lúc 10:07

3. Tìm giá trị nhỏ nhất của các biểu thứca. A = 4x2  4x 11b. B = (x - 1) (x 2) (x 3) (x 6)c. C = x2 - 2x y2 - 4y 7Ai nha... - Hoc24

Trần Hương Trà
Xem chi tiết
Trúc Giang
19 tháng 8 2021 lúc 9:34

undefined

Lấp La Lấp Lánh
19 tháng 8 2021 lúc 9:39

\(A=\left(6x-3y\right)+\left(4x^2-4xy+y^2\right)=3\left(2x-y\right)+\left(2x-y\right)^2=\left(2x-y\right)\left(2+2x-y\right)\)

\(B=9x^2-\left(y^2-4y+4\right)=9x^2-\left(y-2\right)^2=\left(3x-y+2\right)\left(3x+y-2\right)\)

\(C=-25x^2+y^2-6y+9=\left(y^2-6y+9\right)-25x^2=\left(y-3\right)^2-\left(5x\right)^2=\left(y-3-5x\right)\left(y-3+5x\right)\)\(D=x^2-4x-y^2-8y-12=\left(x^2-4x+4\right)-\left(y^2+8y+16\right)=\left(x-2\right)^2-\left(y+4\right)^2=\left(x-2-y-4\right)\left(x-2+y+4\right)=\left(x-y-6\right)\left(x+y+2\right)\)

Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 14:45

a: Ta có: \(A=\left(6x-3y\right)+\left(4x^2-4xy+y^2\right)\)

\(=3\left(2x-y\right)+\left(2x-y\right)^2\)

\(=\left(2x-y\right)\left(2x-y+3\right)\)

b: Ta có: \(B=9x^2-\left(y^2-4y+4\right)\)

\(=9x^2-\left(y-2\right)^2\)

\(=\left(3x-y+2\right)\left(3x+y-2\right)\)

Đinh Cẩm Tú
Xem chi tiết
Akai Haruma
11 tháng 1 2021 lúc 19:29

Lời giải:

a) 

$A=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 10$

Vậy $A_{\min}=10$. Giá trị này đạt tại $(2x+1)^2=0$

$\Leftrightarrow x=-\frac{1}{2}$

b) 

$C=x^2-2x+y^2-4y+7=(x^2-2x+1)+(y^2-4y+4)+2$

$=(x-1)^2+(y-2)^2+2\geq 2$

Vậy $C_{\min}=2$. Giá trị này đạt tại $(x-1)^2=(y-2)^2=0$

$\Leftrightarrow x=1; y=2$

Mạnh=_=
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2022 lúc 17:50

\(A=\left(4x^2+4x+1\right)+10=\left(2x+1\right)^2+10\ge10\)

\(A_{min}=10\) khi \(2x+1=0\Rightarrow x=-\dfrac{1}{2}\)

\(B=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)

\(B_{min}=-36\) khi \(x^2+5x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

\(C=\left(x^2-2x+1\right)+\left(y^2-4x+4\right)+2=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)

\(C_{min}=2\) khi \(\left(x;y\right)=\left(1;2\right)\)

Nguyễn Ngọc Huy Toàn
1 tháng 3 2022 lúc 17:56

a. \(A=4x^2+4x+11\)

   \(A=\left(4x^2+4x+1\right)+10\)

  \(A=\left(2x+1\right)^2+10\)

Ta có: \(\left(2x+1\right)^2\ge0;\forall x\) 

\(\Rightarrow A_{min}=10\)

Dấu "=" xảy ra khi \(\left(2x+1\right)^2=0\)

                            \(\Leftrightarrow2x+1=0\Leftrightarrow x=-\dfrac{1}{2}\)

c.\(C=x^2-2x+y^2-4y+7\)

  \(C=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)

  \(C=\left(x-1\right)^2+\left(y-2\right)^2+2\)

Ta có: \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0;\forall x,y\)

\(\Rightarrow C_{min}=2\)

Dấu "=" xảy ra khi\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

ngọc hân
Xem chi tiết
Nguyễn Huy Tú
18 tháng 7 2021 lúc 15:43

undefinedundefined

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:20

Bài 6:

a) Ta có: \(A=-x^2+6x-11\)

\(=-\left(x^2-6x+11\right)\)

\(=-\left(x-3\right)^2-2\le-2\forall x\)

Dấu '=' xảy ra khi x=3

b) Ta có: \(B=-x^2-8x+5\)

\(=-\left(x^2+8x-5\right)\)

\(=-\left(x^2+8x+16-21\right)\)

\(=-\left(x+4\right)^2+21\le21\forall x\)

Dấu '=' xảy ra khi x=-4

c) Ta có: \(C=-x^2+4x+1\)

\(=-\left(x^2-4x-1\right)\)

\(=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:21

Bài 7:

a) Ta có: \(x^2-6x+11\)

\(=x^2-6x+9+2\)

\(=\left(x-3\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=3

Nguyễn Mai Anh
Xem chi tiết

\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)

Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 9:35

b:

\(D=-25x^2+10x-1-10\)

\(=-\left(25x^2-10x+1\right)-10\)

\(=-\left(5x-1\right)^2-10< =-10\)

Dấu = xảy ra khi x=1/5

\(E=-9x^2-6x-1+20\)

\(=-\left(9x^2+6x+1\right)+20\)

\(=-\left(3x+1\right)^2+20< =20\)

Dấu = xảy ra khi x=-1/3

\(F=-x^2+2x-1+1\)

\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1

.........
Xem chi tiết
Nguyễn Đức Trí
17 tháng 7 2023 lúc 16:22

\(A=x^2-4x+20=x^2-4x+4+16=\left(x-2\right)^2+16\)

Do \(\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(x-2\right)^2+16\ge16\)

\(\Rightarrow Min\left(A\right)=16\)

\(B=x^2-3x+7=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}+7=\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\)

Do \(\left(x-\dfrac{3}{2}\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

\(\Rightarrow Min\left(B\right)=\dfrac{19}{4}\)

\(C=-x^2-10x+70=-\left(x^2+10x+25\right)+25+70=-\left(x-5\right)^2+95\)

Do \(-\left(x-5\right)^2\le0\)

\(\Rightarrow-\left(x-5\right)^2+95\le95\)

\(\Rightarrow Max\left(C\right)=95\)

\(D=-4x^2+12x+1=-\left(4x^2-12x+9\right)+9+1=-\left(2x-3\right)^2+10\)

Do \(-\left(2x-3\right)^2\le0\)

\(\Rightarrow-\left(2x-3\right)^2+10\le10\)

\(\Rightarrow Max\left(D\right)=10\)

Xem chi tiết

x2&#x2212;10x+25x2&#x2212;5x=(x&#x2212;5)2x(x&#x2212;5)=x&#x2212;5x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">x2−10x+25x2−5x=(x−5)2x(x−5)=x−5x

x&#x2212;5x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">x−5x phải có giá trị nguyên.

x+12x&#x2212;2+3x2&#x2212;1&#x2212;x+32x+2)&#x22C5;(4x2&#x2212;45)" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)

x+12(x&#x2212;1)+3(x&#x2212;1)(x+1)&#x2212;x+32(x+1))&#x22C5;2(2x2&#x2212;2)5" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5

(x+1)2+6&#x2212;(x&#x2212;1)(x+3)2(x&#x2212;1)(x+1)&#x22C5;2&#x22C5;2(x2&#x2212;1)5" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5

(x+1)2+6&#x2212;(x2+3x&#x2212;x&#x2212;3)(x&#x2212;1)(x+1)&#x22C5;2(x&#x2212;1)(x+1)5" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5

25" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">25

25" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">25

25" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">25

2(x+1)25+185&#x2212;25x2&#x2212;45x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-table; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">2(x+1)25+185−25x2−45x

2(x2+2x+1)5+185&#x2212;25x2&#x2212;45x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">2(x2+2x+1)5+185−25x2−45x

2x2+4x+25+185&#x2212;25x2&#x2212;45x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">2x2+4x+25+185−25x2−45x

2x2+4x+2+185&#x2212;25x2&#x2212;45x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">2x2+4x+2+185−25x2−45x

2x2+4x+205&#x2212;25x2&#x2212;45x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">2x2+4x+205−25x2−45x

c) tự làm, đkxđ: x1;x1

Khách vãng lai đã xóa
nguyễn hải đăng
19 tháng 12 2019 lúc 21:50

ê k bn với mk ik

😘 😘 😘 😘